Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration.

Jishu Xu, Michaela Hörner, Maike Nagel, Perwin Perhat, Milena Korneck, Marvin Noß, Stefan Hauser, Ludger Schöls, Jakob Admard, Nicolas Casadei, Rebecca Schüle
{"title":"Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration.","authors":"Jishu Xu, Michaela Hörner, Maike Nagel, Perwin Perhat, Milena Korneck, Marvin Noß, Stefan Hauser, Ludger Schöls, Jakob Admard, Nicolas Casadei, Rebecca Schüle","doi":"10.1101/2024.03.26.586780","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed <i>KIF1C-knockout (KO)</i> CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in <i>KIF1C-KO</i> axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of <i>KIF1C</i> on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.03.26.586780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示轴突转录景观:iPSC 衍生皮质神经元的启示及对运动神经元退化的影响
神经元的功能和病理深受轴突和体节不同分子特征的影响。由于区室特异性分析的技术挑战,传统研究往往忽略了这些差异。在这项研究中,我们利用微流体设备,采用稳健的 RNA 序列分析(RNA-seq)方法,从 iPSC 衍生的皮质神经元(CN)中生成高质量的轴突转录组。我们实现了轴突部分的高特异性,确保了样本的纯度而不受污染。比较分析表明,轴突区系中存在独特而特异的转录景观,其特征是转录本类型多样,包括编码蛋白质的mRNA、核糖体蛋白(RP)、线粒体编码的RNA和长非编码RNA(lncRNA)。以前的研究曾报道轴突中存在转录因子(TFs)。在这里,我们检测到了以前未报道过的轴突特异性 TFs 子集,这表明它们积极参与了转录调控。为了研究中枢运动神经元(MN)变性和维持所必需的转录本和通路,我们分析了KIF1C基因敲除(KO)的中枢运动神经元,模拟了遗传性痉挛性截瘫(HSP),这是一种与中枢运动神经元轴突突出的长度依赖性变性有关的疾病。我们发现,KIF1C-KO轴突中缺乏对生存和健康至关重要的几个关键因子,这表明这些因子在其他神经退行性疾病中也可能发挥作用。总之,这项研究强调了微流控设备在人类神经元模型中研究区室特异性转录组学的实用性,并揭示了轴突生物学复杂的分子动态。KIF1C 对轴突转录组的影响不仅加深了我们对多发性神经元疾病的理解,而且为探索特定区室的疾病机理提供了一个前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Palatal segment contributions to midfacial anterior-posterior growth. Membrane potential mediates the cellular response to mechanical pressure. Actin dysregulation induces neuroendocrine plasticity and immune evasion: a vulnerability of small cell lung cancer. Efficient coding in biophysically realistic excitatory-inhibitory spiking networks. Different complex regulatory phenotypes underlie hybrid male sterility in divergent rodent crosses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1