Simulated lunar microgravity transiently arrests growth and induces osteocyte-chondrocyte lineage differentiation in human Wharton's jelly stem cells.

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES npj Microgravity Pub Date : 2024-05-04 DOI:10.1038/s41526-024-00397-1
Arjunan Subramanian, Chelsea Han Lin Ip, Wei Qin, Xiawen Liu, Sean W D Carter, Gokce Oguz, Adaikalavan Ramasamy, Sebastian E Illanes, Arijit Biswas, Gabriel G Perron, Erin L Fee, Sarah W L Li, Michelle K Y Seah, Mahesh A Choolani, Matthew W Kemp
{"title":"Simulated lunar microgravity transiently arrests growth and induces osteocyte-chondrocyte lineage differentiation in human Wharton's jelly stem cells.","authors":"Arjunan Subramanian, Chelsea Han Lin Ip, Wei Qin, Xiawen Liu, Sean W D Carter, Gokce Oguz, Adaikalavan Ramasamy, Sebastian E Illanes, Arijit Biswas, Gabriel G Perron, Erin L Fee, Sarah W L Li, Michelle K Y Seah, Mahesh A Choolani, Matthew W Kemp","doi":"10.1038/s41526-024-00397-1","DOIUrl":null,"url":null,"abstract":"<p><p>Human Wharton's jelly stem cells (hWJSCs) are multipotent stem cells that are extensively employed in biotechnology applications. However, the impact of simulated lunar microgravity (sμG) on the growth, differentiation, and viability of this cell population is incompletely characterized. We aimed to determine whether acute (72 h) exposure to sμG elicited changes in growth and lineage differentiation in hWJSCs and if putative changes were maintained once exposure to terrestrial gravity (1.0 G) was restored. hWJSCs were cultured under standard 1.0 G conditions prior to being passaged and cultured under sμG (0.16 G) using a random positioning machine. Relative to control, hWJSCs cultured under sμG exhibited marked reductions in growth but not viability. Cell population expression of characteristic stemness markers (CD 73, 90, 105) was significantly reduced under sμG conditions. hWJSCs had 308 significantly upregulated and 328 significantly downregulated genes when compared to 1.0 G culture conditions. Key markers of cell replication, including MKI67, were inhibited. Significant upregulation of osteocyte-chondrocyte lineage markers, including SERPINI1, MSX2, TFPI2, BMP6, COMP, TMEM119, LUM, HGF, CHI3L1 and SPP1, and downregulation of cell fate regulators, including DNMT1 and EZH2, were detected in sμG-exposed hWJSCs. When returned to 1.0 G for 3 days, sμG-exposed hWJSCs had accelerated growth, and expression of stemness markers increased, approaching normal (i.e. 95%) levels. Our data support earlier findings that acute sμG significantly reduces the cell division potential of hWJSCs and suggest that acute sμG-exposure induces reversible changes in cell growth accompanied by osteocyte-chondrocyte changes in lineage differentiation.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"51"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00397-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Human Wharton's jelly stem cells (hWJSCs) are multipotent stem cells that are extensively employed in biotechnology applications. However, the impact of simulated lunar microgravity (sμG) on the growth, differentiation, and viability of this cell population is incompletely characterized. We aimed to determine whether acute (72 h) exposure to sμG elicited changes in growth and lineage differentiation in hWJSCs and if putative changes were maintained once exposure to terrestrial gravity (1.0 G) was restored. hWJSCs were cultured under standard 1.0 G conditions prior to being passaged and cultured under sμG (0.16 G) using a random positioning machine. Relative to control, hWJSCs cultured under sμG exhibited marked reductions in growth but not viability. Cell population expression of characteristic stemness markers (CD 73, 90, 105) was significantly reduced under sμG conditions. hWJSCs had 308 significantly upregulated and 328 significantly downregulated genes when compared to 1.0 G culture conditions. Key markers of cell replication, including MKI67, were inhibited. Significant upregulation of osteocyte-chondrocyte lineage markers, including SERPINI1, MSX2, TFPI2, BMP6, COMP, TMEM119, LUM, HGF, CHI3L1 and SPP1, and downregulation of cell fate regulators, including DNMT1 and EZH2, were detected in sμG-exposed hWJSCs. When returned to 1.0 G for 3 days, sμG-exposed hWJSCs had accelerated growth, and expression of stemness markers increased, approaching normal (i.e. 95%) levels. Our data support earlier findings that acute sμG significantly reduces the cell division potential of hWJSCs and suggest that acute sμG-exposure induces reversible changes in cell growth accompanied by osteocyte-chondrocyte changes in lineage differentiation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟月球微重力可短暂抑制人的沃顿果冻干细胞生长并诱导其骨细胞-软骨细胞系分化。
人类沃顿果冻干细胞(hWJSCs)是一种多能干细胞,被广泛应用于生物技术领域。然而,模拟月球微重力(sμG)对这一细胞群的生长、分化和存活能力的影响尚未完全定性。我们的目的是确定急性(72 小时)暴露于 sμG 是否会引起 hWJSCs 的生长和品系分化发生变化,以及一旦恢复暴露于陆地重力(1.0 G),推测的变化是否会保持。与对照组相比,在sμG条件下培养的hWJSCs表现出明显的生长下降,但存活率没有下降。与 1.0 G 培养条件相比,hWJSCs 有 308 个基因明显上调,328 个基因明显下调。细胞复制的关键标志物(包括 MKI67)受到抑制。在 sμG 暴露的 hWJSCs 中检测到成骨细胞-软骨细胞系标志物(包括 SERPINI1、MSX2、TFPI2、BMP6、COMP、TMEM119、LUM、HGF、CHI3L1 和 SPP1)的明显上调,以及细胞命运调节因子(包括 DNMT1 和 EZH2)的下调。当回到1.0 G条件下3天后,sμG暴露的hWJSCs生长加速,干性标志物的表达增加,接近正常(即95%)水平。我们的数据支持早先的发现,即急性sμG会显著降低hWJSCs的细胞分裂潜能,并表明急性sμG暴露会诱导细胞生长的可逆变化,同时伴随着骨细胞-软骨细胞系分化的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
期刊最新文献
Stressors affect human motor timing during spaceflight. Development and characterization of a low intensity vibrational system for microgravity studies. Challenges for the human immune system after leaving Earth. Retinal blood vessel diameter changes with 60-day head-down bedrest are unaffected by antioxidant nutritional cocktail. Articular cartilage loss is an unmitigated risk of human spaceflight.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1