Ali Keshavarz, Amir Abbas Navidinia, Bentol Hoda Kuhestani Dehaghi, Vahid Amiri, Mohammad Hossein Mohammadi, Mehdi Allahbakhshian Farsani
{"title":"Identification of Prognostic Genes in Acute Myeloid Leukemia Microenvironment: A Bioinformatic and Experimental Analysis.","authors":"Ali Keshavarz, Amir Abbas Navidinia, Bentol Hoda Kuhestani Dehaghi, Vahid Amiri, Mohammad Hossein Mohammadi, Mehdi Allahbakhshian Farsani","doi":"10.1007/s12033-024-01128-3","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a lethal hematologic malignancy with a variable prognosis that is highly dependent on the bone marrow microenvironment. Consequently, a better understanding of the AML microenvironment is crucial for early diagnosis, risk stratification, and personalized therapy. In recent years, the role of bioinformatics as a powerful tool in clarifying the complexities of cancer has become more prominent. Gene expression profile and clinical data of 173 AML patients were downloaded from the TCGA database, and the xCell algorithm was applied to calculate the microenvironment score (MS). Then, the correlation of MS with FAB classification, and CALGB cytogenetic risk category was investigated. Differentially expressed genes (DEGs) were identified, and the correlation analysis of DEGs with patient survival was done using univariate cox. The prognostic value of candidate prognostic DEGs was confirmed based on the GEO database. In the last step, real-time PCR was used to compare the expression of the top three prognostic genes between patients and the control group. During TCGA data analysis, 716 DEGs were identified, and survival analysis results showed that 152 DEGs had survival-related changes. In addition, the prognostic value of 31 candidate prognostic genes was confirmed by GEO data analysis. Finally, the expression analysis of FLVCR2, SMO, and CREB5 genes, the most related genes to patients' survival, was significantly different between patients and control groups. In summary, we identified key microenvironment-related genes that influence the survival of AML patients and may serve as prognostic and therapeutic targets.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"1423-1432"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01128-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute myeloid leukemia (AML) is a lethal hematologic malignancy with a variable prognosis that is highly dependent on the bone marrow microenvironment. Consequently, a better understanding of the AML microenvironment is crucial for early diagnosis, risk stratification, and personalized therapy. In recent years, the role of bioinformatics as a powerful tool in clarifying the complexities of cancer has become more prominent. Gene expression profile and clinical data of 173 AML patients were downloaded from the TCGA database, and the xCell algorithm was applied to calculate the microenvironment score (MS). Then, the correlation of MS with FAB classification, and CALGB cytogenetic risk category was investigated. Differentially expressed genes (DEGs) were identified, and the correlation analysis of DEGs with patient survival was done using univariate cox. The prognostic value of candidate prognostic DEGs was confirmed based on the GEO database. In the last step, real-time PCR was used to compare the expression of the top three prognostic genes between patients and the control group. During TCGA data analysis, 716 DEGs were identified, and survival analysis results showed that 152 DEGs had survival-related changes. In addition, the prognostic value of 31 candidate prognostic genes was confirmed by GEO data analysis. Finally, the expression analysis of FLVCR2, SMO, and CREB5 genes, the most related genes to patients' survival, was significantly different between patients and control groups. In summary, we identified key microenvironment-related genes that influence the survival of AML patients and may serve as prognostic and therapeutic targets.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.