MCN portfolio: An efficient portfolio prediction and selection model using multiserial cascaded network with hybrid meta-heuristic optimization algorithm.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-05-08 DOI:10.1080/0954898X.2024.2346115
Meeta Sharma, Pankaj Kumar Sharma, Hemant Kumar Vijayvergia, Amit Garg, Shyam Sundar Agarwal, Varun Prakash Saxena
{"title":"MCN portfolio: An efficient portfolio prediction and selection model using multiserial cascaded network with hybrid meta-heuristic optimization algorithm.","authors":"Meeta Sharma, Pankaj Kumar Sharma, Hemant Kumar Vijayvergia, Amit Garg, Shyam Sundar Agarwal, Varun Prakash Saxena","doi":"10.1080/0954898X.2024.2346115","DOIUrl":null,"url":null,"abstract":"<p><p>Generally, financial investments are necessary for portfolio management. However, the prediction of a portfolio becomes complicated in several processing techniques which may cause certain issues while predicting the portfolio. Moreover, the error analysis needs to be validated with efficient performance measures. To solve the problems of portfolio optimization, a new portfolio prediction framework is developed. Initially, a dataset is collected from the standard database which is accumulated with various companies' portfolios. For forecasting the benefits of companies, a Multi-serial Cascaded Network (MCNet) is employed which constitutes of Autoencoder, 1D Convolutional Neural Network (1DCNN), and Recurrent Neural Network (RNN) is utilized. The prediction output for the different companies is stored using the developed MCNet model for further use. After predicting the benefits, the best company with the highest profit is selected by Integration of Artificial Rabbit and Hummingbird Algorithm (IARHA). The major contribution of our work is to increase the accuracy of prediction and to choose the optimal portfolio. The implementation is conducted in Python platform. The result analysis shows that the developed model achieves 0.89% and 0.56% regarding RMSE and MAE measures. Throughout the analysis, the experimentation of the developed model shows enriched performance.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-38"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2346115","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generally, financial investments are necessary for portfolio management. However, the prediction of a portfolio becomes complicated in several processing techniques which may cause certain issues while predicting the portfolio. Moreover, the error analysis needs to be validated with efficient performance measures. To solve the problems of portfolio optimization, a new portfolio prediction framework is developed. Initially, a dataset is collected from the standard database which is accumulated with various companies' portfolios. For forecasting the benefits of companies, a Multi-serial Cascaded Network (MCNet) is employed which constitutes of Autoencoder, 1D Convolutional Neural Network (1DCNN), and Recurrent Neural Network (RNN) is utilized. The prediction output for the different companies is stored using the developed MCNet model for further use. After predicting the benefits, the best company with the highest profit is selected by Integration of Artificial Rabbit and Hummingbird Algorithm (IARHA). The major contribution of our work is to increase the accuracy of prediction and to choose the optimal portfolio. The implementation is conducted in Python platform. The result analysis shows that the developed model achieves 0.89% and 0.56% regarding RMSE and MAE measures. Throughout the analysis, the experimentation of the developed model shows enriched performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MCN 投资组合:使用混合元启发式优化算法的多串级联网络的高效投资组合预测和选择模型。
一般来说,金融投资是投资组合管理的必要条件。然而,投资组合的预测在多种处理技术中变得复杂,这可能会在预测投资组合时造成某些问题。此外,误差分析还需要有效的性能指标来验证。为了解决投资组合优化问题,我们开发了一个新的投资组合预测框架。首先,从标准数据库中收集数据集,该数据集由各种公司的投资组合累积而成。为了预测公司的收益,采用了由自动编码器、一维卷积神经网络(1DCNN)和循环神经网络(RNN)组成的多序列级联网络(MCNet)。利用开发的 MCNet 模型存储不同公司的预测输出,以供进一步使用。预测效益后,通过人工兔子和蜂鸟算法集成(IARHA)选出利润最高的最佳公司。我们工作的主要贡献在于提高预测的准确性并选择最佳投资组合。该模型在 Python 平台上实现。结果分析表明,所开发模型的 RMSE 和 MAE 分别为 0.89% 和 0.56%。在整个分析过程中,所开发模型的实验结果表明其性能得到了提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory? Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset. Key point trajectory prediction method of human stochastic posture falls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1