Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-11-16 DOI:10.1080/0954898X.2024.2426580
Suresh Kumar Krishnamoorthy, Vanitha Cn
{"title":"Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection.","authors":"Suresh Kumar Krishnamoorthy, Vanitha Cn","doi":"10.1080/0954898X.2024.2426580","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-27"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2426580","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer involves abnormal cell growth, with types like intestinal and oesophageal cancer often diagnosed in advanced stages, making them hard to cure. Symptoms are like burning sensations in the stomach and swallowing difficulties are specified as colorectal cancer. Deep learning significantly impacts the medical image processing and diagnosis, offering potential improvements in accuracy and efficiency. The Kruskal Szekeres Generative Adversarial Network Augmented Deep Autoencoder (KSGANA-DA) is introduced for early colorectal cancer detection and it comprises two stages; Initial stage, data augmentation uses Affine Transform via Random Horizontal Rotation and Geometric Transform via Kruskal-Szekeres that coordinates to improve the training dataset diversity, boosting detection performance. The second stage, a Deep Autoencoder Anatomical Landmark-based Image Segmentation preserves edge pixel spatial locations, improving precision and recall for early boundary detection. Experiments validate KSGANA-DA performance and different existing methods are implemented into Python. The results of KSGANA-DA are to provide higher precision by 41%, recall by 7%, and lesser training time by 46% than compared to conventional methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于结直肠癌检测的 Kruskal Szekeres 生成对抗网络增强型深度自动编码器。
癌症涉及细胞的异常生长,肠癌和食道癌等类型的癌症通常在晚期才被诊断出来,因此很难治愈。胃部灼烧感和吞咽困难等症状被指定为结直肠癌。深度学习对医学图像处理和诊断产生了重大影响,有望提高准确性和效率。Kruskal Szekeres生成对抗网络增强型深度自动编码器(KSGANA-DA)用于早期结直肠癌检测,它包括两个阶段:第一阶段,数据增强使用通过随机水平旋转进行的仿射变换和通过Kruskal-Szekeres进行的几何变换,以提高训练数据集的多样性,从而提高检测性能。第二阶段是基于解剖地标的深度自动编码器图像分割,它保留了边缘像素的空间位置,提高了早期边界检测的精度和召回率。实验验证了 KSGANA-DA 的性能,并在 Python 中实现了不同的现有方法。与传统方法相比,KSGANA-DA 的精确度提高了 41%,召回率提高了 7%,训练时间减少了 46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory? Automatic screening of retinal lesions for detecting diabetic retinopathy using adaptive multiscale MobileNet with abnormality segmentation from public dataset. Key point trajectory prediction method of human stochastic posture falls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1