Rahul Navik, Eryu Wang, Xiao Ding, KaiXuan Qiu, Jia Li
{"title":"Atmospheric carbon dioxide capture by adsorption on amine-functionalized silica composites: a review","authors":"Rahul Navik, Eryu Wang, Xiao Ding, KaiXuan Qiu, Jia Li","doi":"10.1007/s10311-024-01737-z","DOIUrl":null,"url":null,"abstract":"<div><p>The rising negative effects of climate change are caused mainly by the increase of atmospheric carbon dioxide concentrations, calling for advanced technologies to extract carbon dioxide from atmospheric air. Here we review carbon dioxide capture from atmospheric air by amine-functionalized silica composites with emphasis on development principles, mechanisms, absorbent criteria, performance determination, and preparation techniques. Amine-silica absorbent preparation for carbon dioxide capture is done by impregnation, chemical graphting, hybrid functionalization, and in situ polymerization. High costs, poor performance, and scalability are actually posing challenges for large-scale deployment.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"1791 - 1830"},"PeriodicalIF":15.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01737-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rising negative effects of climate change are caused mainly by the increase of atmospheric carbon dioxide concentrations, calling for advanced technologies to extract carbon dioxide from atmospheric air. Here we review carbon dioxide capture from atmospheric air by amine-functionalized silica composites with emphasis on development principles, mechanisms, absorbent criteria, performance determination, and preparation techniques. Amine-silica absorbent preparation for carbon dioxide capture is done by impregnation, chemical graphting, hybrid functionalization, and in situ polymerization. High costs, poor performance, and scalability are actually posing challenges for large-scale deployment.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.