Efficient computation of topological integral transforms

Vadim Lebovici, Steve Oudot, Hugo Passe
{"title":"Efficient computation of topological integral transforms","authors":"Vadim Lebovici, Steve Oudot, Hugo Passe","doi":"arxiv-2405.02256","DOIUrl":null,"url":null,"abstract":"Topological integral transforms have found many applications in shape\nanalysis, from prediction of clinical outcomes in brain cancer to analysis of\nbarley seeds. Using Euler characteristic as a measure, these objects record\nrich geometric information on weighted polytopal complexes. While some\nimplementations exist, they only enable discretized representations of the\ntransforms, and they do not handle weighted complexes (such as for instance\nimages). Moreover, recent hybrid transforms lack an implementation. In this paper, we introduce Eucalc, a novel implementation of three\ntopological integral transforms -- the Euler characteristic transform, the\nRadon transform, and hybrid transforms -- for weighted cubical complexes.\nLeveraging piecewise linear Morse theory and Euler calculus, the algorithms\nsignificantly reduce computational complexity by focusing on critical points.\nOur software provides exact representations of transforms, handles both binary\nand grayscale images, and supports multi-core processing. It is publicly\navailable as a C++ library with a Python wrapper. We present mathematical\nfoundations, implementation details, and experimental evaluations,\ndemonstrating Eucalc's efficiency.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Topological integral transforms have found many applications in shape analysis, from prediction of clinical outcomes in brain cancer to analysis of barley seeds. Using Euler characteristic as a measure, these objects record rich geometric information on weighted polytopal complexes. While some implementations exist, they only enable discretized representations of the transforms, and they do not handle weighted complexes (such as for instance images). Moreover, recent hybrid transforms lack an implementation. In this paper, we introduce Eucalc, a novel implementation of three topological integral transforms -- the Euler characteristic transform, the Radon transform, and hybrid transforms -- for weighted cubical complexes. Leveraging piecewise linear Morse theory and Euler calculus, the algorithms significantly reduce computational complexity by focusing on critical points. Our software provides exact representations of transforms, handles both binary and grayscale images, and supports multi-core processing. It is publicly available as a C++ library with a Python wrapper. We present mathematical foundations, implementation details, and experimental evaluations, demonstrating Eucalc's efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拓扑积分变换的高效计算
拓扑积分变换在形状分析方面有许多应用,从预测脑癌的临床结果到分析大麦种子。这些对象使用欧拉特征作为度量,记录了加权多顶复合物的丰富几何信息。虽然有一些实现方法,但它们只能实现变换的离散化表示,无法处理加权复合物(例如图像)。此外,最近的混合变换也缺乏实现方法。本文介绍了 Eucalc,它是针对加权立方复数的三种拓扑积分变换--欧拉特征变换、拉登变换和混合变换--的新型实现。我们的软件提供了精确的变换表示,可处理二进制和灰度图像,并支持多核处理。它是一个公开的 C++ 库,带有 Python 封装。我们介绍了 Eucalc 的数学基础、实现细节和实验评估,展示了 Eucalc 的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1