Static Reflective Surfaces for Improved Terahertz Coverage

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Infrared, Millimeter, and Terahertz Waves Pub Date : 2024-05-06 DOI:10.1007/s10762-024-00985-y
Thanh Le, Suresh Singh
{"title":"Static Reflective Surfaces for Improved Terahertz Coverage","authors":"Thanh Le, Suresh Singh","doi":"10.1007/s10762-024-00985-y","DOIUrl":null,"url":null,"abstract":"<p>LoS (Line of Sight) MIMO (Multiple Input Multiple Output) is considered the best way to deliver high-capacity channels for terahertz communications due to the severe attenuation suffered by reflected components. Unfortunately, terahertz links are easily blocked by any obstruction resulting in link breakage. Therefore, it is necessary to provide alternative paths via reflectors. A problem shared by LoS paths and reflected paths (via polished reflectors) is that the channel matrix is <i>rank 1</i> in the far field. As a result, the achieved capacity is lower than what can theoretically be achieved in a rich multi-path environment. In this work, we simultaneously solve the channel rank problem and the coverage problem by using static reflective surfaces which provide limited scattering of the incident signal in a way that minimizes signal loss but provides multiple paths to the receiver with varying phase. We construct such a surface and characterize the received signal using a terahertz testbed. We show that using our surface, we can improve channel capacity for 2 × 2 LoS MIMO. We also develop a theoretical model for the received signal and show that the reflected capacity matches the measured capacity well.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"31 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00985-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

LoS (Line of Sight) MIMO (Multiple Input Multiple Output) is considered the best way to deliver high-capacity channels for terahertz communications due to the severe attenuation suffered by reflected components. Unfortunately, terahertz links are easily blocked by any obstruction resulting in link breakage. Therefore, it is necessary to provide alternative paths via reflectors. A problem shared by LoS paths and reflected paths (via polished reflectors) is that the channel matrix is rank 1 in the far field. As a result, the achieved capacity is lower than what can theoretically be achieved in a rich multi-path environment. In this work, we simultaneously solve the channel rank problem and the coverage problem by using static reflective surfaces which provide limited scattering of the incident signal in a way that minimizes signal loss but provides multiple paths to the receiver with varying phase. We construct such a surface and characterize the received signal using a terahertz testbed. We show that using our surface, we can improve channel capacity for 2 × 2 LoS MIMO. We also develop a theoretical model for the received signal and show that the reflected capacity matches the measured capacity well.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高太赫兹覆盖率的静态反射表面
LoS(视线)MIMO(多输入多输出)被认为是为太赫兹通信提供大容量信道的最佳方式,因为反射成分会产生严重衰减。遗憾的是,太赫兹链路很容易被任何障碍物阻断,导致链路中断。因此,有必要通过反射器提供替代路径。LoS 路径和反射路径(通过抛光反射器)共同面临的一个问题是,信道矩阵在远场的秩为 1。因此,实现的容量低于理论上在丰富的多路径环境中可以实现的容量。在这项工作中,我们同时解决了信道秩问题和覆盖问题,方法是使用静态反射表面,这种表面对入射信号进行有限散射,从而最大限度地减少信号损耗,同时提供多条通往接收器的不同相位路径。我们构建了这样一个表面,并使用太赫兹测试平台对接收信号进行了表征。我们的研究表明,使用我们的曲面,可以提高 2 × 2 LoS MIMO 的信道容量。我们还为接收信号建立了一个理论模型,并证明反射容量与测量容量十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
期刊最新文献
Characterization of Ultrathin Conductive Films Using a Simplified Approach for Terahertz Time-Domain Spectroscopic Ellipsometry A 60-GHz Out-of-Phase Power Divider with WR-15 Standard Interface Based on Trapped Printed Gap Waveguide Technology Advanced Data Processing of THz-Time Domain Spectroscopy Data with Sinusoidally Moving Delay Lines Hard Rock Absorption Measurements in the W-Band Performance Analysis of Novel Graphene Process Low-Noise Amplifier with Multi-stage Stagger-Tuned Approach over D-band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1