{"title":"A smoothed semiparametric likelihood for estimation of nonparametric finite mixture models with a copula-based dependence structure","authors":"Michael Levine, Gildas Mazo","doi":"10.1007/s00180-024-01483-4","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, we consider a finite multivariate nonparametric mixture model where the dependence between the marginal densities is modeled using the copula device. Pseudo expectation–maximization (EM) stochastic algorithms were recently proposed to estimate all of the components of this model under a location-scale constraint on the marginals. Here, we introduce a deterministic algorithm that seeks to maximize a smoothed semiparametric likelihood. No location-scale assumption is made about the marginals. The algorithm is monotonic in one special case, and, in another, leads to “approximate monotonicity”—whereby the difference between successive values of the objective function becomes non-negative up to an additive term that becomes negligible after a sufficiently large number of iterations. The behavior of this algorithm is illustrated on several simulated and real datasets. The results suggest that, under suitable conditions, the proposed algorithm may indeed be monotonic in general. A discussion of the results and some possible future research directions round out our presentation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01483-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, we consider a finite multivariate nonparametric mixture model where the dependence between the marginal densities is modeled using the copula device. Pseudo expectation–maximization (EM) stochastic algorithms were recently proposed to estimate all of the components of this model under a location-scale constraint on the marginals. Here, we introduce a deterministic algorithm that seeks to maximize a smoothed semiparametric likelihood. No location-scale assumption is made about the marginals. The algorithm is monotonic in one special case, and, in another, leads to “approximate monotonicity”—whereby the difference between successive values of the objective function becomes non-negative up to an additive term that becomes negligible after a sufficiently large number of iterations. The behavior of this algorithm is illustrated on several simulated and real datasets. The results suggest that, under suitable conditions, the proposed algorithm may indeed be monotonic in general. A discussion of the results and some possible future research directions round out our presentation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.