{"title":"Features of Rayleigh Scattering by a Particle Near an Interface","authors":"A. O. Maksimov","doi":"10.1134/S1063771023601395","DOIUrl":null,"url":null,"abstract":"<div><p>Features of Rayleigh scattering by a solid particle at a small distance compared to the wavelength from an impenetrable plane boundary are revealed. The choice of the Green’s function in the integral representation of the Helmholtz equation makes it possible to reduce integration only over the particle surface and eliminate the contribution of the interface surface. When expanding over a small wave parameter, a well-known approach is used, making it possible to represent the solution of a given order as the sum of a potential function and a component expressed in terms of lower-order approximations. The potential component is found, expressed in terms of solid irregular harmonics centered on the particle and its mirror image. The vibrational velocity of the center of a particle and the scattering amplitude are determined. In the lowest order of the wavenumber, the scattering amplitude is expressed in terms of the monopole and dipole components.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 1","pages":"1 - 8"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023601395","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Features of Rayleigh scattering by a solid particle at a small distance compared to the wavelength from an impenetrable plane boundary are revealed. The choice of the Green’s function in the integral representation of the Helmholtz equation makes it possible to reduce integration only over the particle surface and eliminate the contribution of the interface surface. When expanding over a small wave parameter, a well-known approach is used, making it possible to represent the solution of a given order as the sum of a potential function and a component expressed in terms of lower-order approximations. The potential component is found, expressed in terms of solid irregular harmonics centered on the particle and its mirror image. The vibrational velocity of the center of a particle and the scattering amplitude are determined. In the lowest order of the wavenumber, the scattering amplitude is expressed in terms of the monopole and dipole components.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.