Phenotypic, biochemical and genetic diversity of pepper (Capsicum spp.) germplasm reflects selection for cultivar types and spatial distribution

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Reports Pub Date : 2024-05-02 DOI:10.1007/s11816-024-00904-6
Sayed Azrah Indrabi, Ajaz Malik, Geetika Malik, Khursheed Hussain, Asif Shikari, Javid Iqbal Mir, Ji Eun Park, Anh Tuan Le, Sheikh Mansoor, Khalid Z. Masoodi
{"title":"Phenotypic, biochemical and genetic diversity of pepper (Capsicum spp.) germplasm reflects selection for cultivar types and spatial distribution","authors":"Sayed Azrah Indrabi, Ajaz Malik, Geetika Malik, Khursheed Hussain, Asif Shikari, Javid Iqbal Mir, Ji Eun Park, Anh Tuan Le, Sheikh Mansoor, Khalid Z. Masoodi","doi":"10.1007/s11816-024-00904-6","DOIUrl":null,"url":null,"abstract":"<p>Throughout the globe morphological, biochemical and genetic variability exists in chilli and is harnessed to achieve specific breeding objectives. In this study, chilli germplasm was characterized based on horticultural traits, biochemical quantification and simple sequence repeat (SSR) polymorphism for diversity estimation. A total of 36 SSR primers were utilised to study the genetic divergence among 48 genotypes of chilli collected from nine states of India. Among the 36 primers, sixteen amplified null alleles. A total of 41 alleles were detected with average 2.05 alleles per locus. The largest number of alleles (5) were obtained with marker CAMS-234. The polymorphic information content ranged from 0.06 to 0.72 with an average of 0.50. On the basis of SSR analysis, the UPGMA cluster classified 48 genotypes into three groups. There was significant variability in germplasm for all morpho-biochemical traits. Kashi Anmol (100.50 q/ha) expressed the highest yield. Highest vitamin C content at green stage was recorded in IC-561635 (187 mg/100 g) and the greatest capsaicin content (9547.90 µg/g) equivalent to pungency of 171,862.2 Scoville heat units (SHU) was recorded in Bhut Jolokia. Principal component analysis indicates that the first five principal components explain 74.63% per cent of the total variation. Additionally, analysis of molecular variance (AMOVA) showed that 1% of the total genetic variation occurred among the population and 99% genetic variation within the populations, whereas the pairwise F<sub>st</sub> specified the moderate genetic variation ranging from 0.002 to 0.020. The present investigation has strengthened the knowledge of genetic worth of this germplasm for application in various genetic improvement programmes.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00904-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout the globe morphological, biochemical and genetic variability exists in chilli and is harnessed to achieve specific breeding objectives. In this study, chilli germplasm was characterized based on horticultural traits, biochemical quantification and simple sequence repeat (SSR) polymorphism for diversity estimation. A total of 36 SSR primers were utilised to study the genetic divergence among 48 genotypes of chilli collected from nine states of India. Among the 36 primers, sixteen amplified null alleles. A total of 41 alleles were detected with average 2.05 alleles per locus. The largest number of alleles (5) were obtained with marker CAMS-234. The polymorphic information content ranged from 0.06 to 0.72 with an average of 0.50. On the basis of SSR analysis, the UPGMA cluster classified 48 genotypes into three groups. There was significant variability in germplasm for all morpho-biochemical traits. Kashi Anmol (100.50 q/ha) expressed the highest yield. Highest vitamin C content at green stage was recorded in IC-561635 (187 mg/100 g) and the greatest capsaicin content (9547.90 µg/g) equivalent to pungency of 171,862.2 Scoville heat units (SHU) was recorded in Bhut Jolokia. Principal component analysis indicates that the first five principal components explain 74.63% per cent of the total variation. Additionally, analysis of molecular variance (AMOVA) showed that 1% of the total genetic variation occurred among the population and 99% genetic variation within the populations, whereas the pairwise Fst specified the moderate genetic variation ranging from 0.002 to 0.020. The present investigation has strengthened the knowledge of genetic worth of this germplasm for application in various genetic improvement programmes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辣椒(辣椒属)种质的表型、生化和遗传多样性反映了对栽培品种类型和空间分布的选择
在全球范围内,辣椒存在形态、生化和遗传变异,并被用来实现特定的育种目标。本研究根据园艺性状、生化定量和简单序列重复(SSR)多态性对辣椒种质进行了特征描述,以评估其多样性。共使用了 36 种 SSR 引物来研究从印度九个邦收集的 48 种辣椒基因型之间的遗传差异。在 36 个引物中,有 16 个扩增出了空等位基因。共检测到 41 个等位基因,平均每个位点有 2.05 个等位基因。标记 CAMS-234 获得的等位基因数最多(5 个)。多态信息含量从 0.06 到 0.72 不等,平均为 0.50。根据 SSR 分析,UPGMA 聚类将 48 个基因型分为三组。种质的所有形态生化性状都存在明显的差异。Kashi Anmol(100.50 q/ha)产量最高。IC-561635 的绿色阶段维生素 C 含量最高(187 毫克/100 克),Bhut Jolokia 的辣椒素含量最高(9 547.90 微克/克),相当于 171862.2 斯高维尔热量单位(SHU)。主成分分析表明,前五个主成分解释了 74.63% 的总变化。此外,分子方差分析(AMOVA)表明,种群间的遗传变异占总遗传变异的 1%,种群内的遗传变异占总遗传变异的 99%,而配对 Fst 表明遗传变异在 0.002 至 0.020 之间。本研究加强了对该种质遗传价值的认识,有助于将其应用于各种遗传改良计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
期刊最新文献
Overexpression of CRK4, the cysteine-rich receptor-like protein kinase of Arabidopsis, regulates the resistance to abiotic stress and abscisic acid responses Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.) Molecular characterization of a sweetpotato stress tolerance-associated GDP-L-galactose phosphorylase gene (IbGGP1) in response to abiotic stress Differential expression of sweetpotato nodulin 26-like intrinsic protein (NIP) genes in response to infection with the root knot nematode Identification of key genes regulating macronutrient accumulation and final yield in wheat under potassium deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1