The core stomatal proteins SPCH, MUTE and FAMA associate with both types of ICE proteins, VrICE1 and VrICE4, in Vitis riparia

IF 2.2 4区 生物学 Q2 PLANT SCIENCES Theoretical and Experimental Plant Physiology Pub Date : 2024-05-04 DOI:10.1007/s40626-024-00331-6
M. Atikur Rahman, Alison Edge, Layla Alibabai, Annette Nassuth
{"title":"The core stomatal proteins SPCH, MUTE and FAMA associate with both types of ICE proteins, VrICE1 and VrICE4, in Vitis riparia","authors":"M. Atikur Rahman, Alison Edge, Layla Alibabai, Annette Nassuth","doi":"10.1007/s40626-024-00331-6","DOIUrl":null,"url":null,"abstract":"<p>SPEECHLESS (SPCH), MUTE and FAMA drive stomatal development in <i>Arabidopsis</i>. They do so in association with SCREAM/INDUCER OF CBF EXPRESSION (SCRM/ICE) proteins. Orthologous proteins have also been reported for other plants, including now for <i>Vitis</i>, suggesting that a similar process occurs during stomata formation also in other plants. However, the details of this process likely vary because the <i>Vitis</i> protein sequences are most similar to those of dicots other than <i>Arabidopsis</i>. We recently reported a 2nd type of ICE protein in angiosperms, VrICE4L, with unique sequences in its putative protein-interacting bHLH and ACTL domains. This brings up the question whether this second ICE protein is also involved in stomatal formation. Overexpression of any one of the <i>Vitis riparia</i> SPCH, MUTE, FAMA or ICE proteins was found to affect stomata numbers in tobacco leaves. Localization, bimolecular fluorescence complementation (BiFC) and pull-down experiments pointed that VrSPCH, VrMUTE and VrFAMA can interact with both types of ICE proteins present in angiosperms, represented by VrICE1 and VrICE4. Taken together, these findings suggest that stomatal development in <i>Vitis</i> involves SPCH/ICE, MUTE/ICE and FAMA/ICE complexes with functions that are less similar to those in <i>Arabidopsis</i> than to those in other dicots.</p>","PeriodicalId":23038,"journal":{"name":"Theoretical and Experimental Plant Physiology","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40626-024-00331-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

SPEECHLESS (SPCH), MUTE and FAMA drive stomatal development in Arabidopsis. They do so in association with SCREAM/INDUCER OF CBF EXPRESSION (SCRM/ICE) proteins. Orthologous proteins have also been reported for other plants, including now for Vitis, suggesting that a similar process occurs during stomata formation also in other plants. However, the details of this process likely vary because the Vitis protein sequences are most similar to those of dicots other than Arabidopsis. We recently reported a 2nd type of ICE protein in angiosperms, VrICE4L, with unique sequences in its putative protein-interacting bHLH and ACTL domains. This brings up the question whether this second ICE protein is also involved in stomatal formation. Overexpression of any one of the Vitis riparia SPCH, MUTE, FAMA or ICE proteins was found to affect stomata numbers in tobacco leaves. Localization, bimolecular fluorescence complementation (BiFC) and pull-down experiments pointed that VrSPCH, VrMUTE and VrFAMA can interact with both types of ICE proteins present in angiosperms, represented by VrICE1 and VrICE4. Taken together, these findings suggest that stomatal development in Vitis involves SPCH/ICE, MUTE/ICE and FAMA/ICE complexes with functions that are less similar to those in Arabidopsis than to those in other dicots.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
葡萄树的核心气孔蛋白 SPCH、MUTE 和 FAMA 与两种类型的 ICE 蛋白(VrICE1 和 VrICE4)都有关联
SPEECHLESS(SPCH)、MUTE 和 FAMA 驱动拟南芥的气孔发育。它们与 SCREAM/INDUCER OF CBF EXPRESSION(SCRM/ICE)蛋白共同发挥作用。其他植物的同源蛋白也有报道,包括现在的葡萄属植物,这表明在其他植物的气孔形成过程中也有类似的过程。然而,这一过程的细节可能有所不同,因为葡萄属植物的蛋白质序列与拟南芥以外的双子叶植物的蛋白质序列最为相似。我们最近报告了被子植物中的第二种 ICE 蛋白--VrICE4L,其推测的蛋白相互作用 bHLH 和 ACTL 结构域具有独特的序列。这就提出了第二个 ICE 蛋白是否也参与气孔形成的问题。研究发现,过量表达任何一种葡萄孢 SPCH、MUTE、FAMA 或 ICE 蛋白都会影响烟草叶片的气孔数量。定位、双分子荧光互补(BiFC)和牵引实验表明,VrSPCH、VrMUTE 和 VrFAMA 可以与被子植物中存在的两种 ICE 蛋白(以 VrICE1 和 VrICE4 为代表)相互作用。综上所述,这些研究结果表明,葡萄气孔发育涉及 SPCH/ICE、MUTE/ICE 和 FAMA/ICE 复合物,其功能与拟南芥的相似性低于其他双子叶植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
7.70%
发文量
32
期刊介绍: The journal does not publish articles in taxonomy, anatomy, systematics and ecology unless they have a physiological approach related to the following sections: Biochemical Processes: primary and secondary metabolism, and biochemistry; Photobiology and Photosynthesis Processes; Cell Biology; Genes and Development; Plant Molecular Biology; Signaling and Response; Plant Nutrition; Growth and Differentiation: seed physiology, hormonal physiology and photomorphogenesis; Post-Harvest Physiology; Ecophysiology/Crop Physiology and Stress Physiology; Applied Plant Ecology; Plant-Microbe and Plant-Insect Interactions; Instrumentation in Plant Physiology; Education in Plant Physiology.
期刊最新文献
Reactive oxygen species in pollination drops of coniferous plants Ammonium induces aquaporin gene expression in Guzmania monostachia (Bromeliaceae) under drought The nematophagous root endophyte Pochonia chlamydosporia enhances tolerance to drought in soybean The expression of 1-Cys-PRX reflects changes in Coffea arabica seed quality during storage Inhibition of polyamine homeostasis facilitates root extension by modulating IAA and PIN1 distribution in etiolated salt-stressed sunflower seedlings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1