Muhammad U. Zia, Prabhakaran Thanjavur Sambasivam, Dechao Chen, Shamsul A. Bhuiyan, Rebecca Ford, Qin Li
{"title":"A carbon dot toolbox for managing biotic and abiotic stresses in crop production systems","authors":"Muhammad U. Zia, Prabhakaran Thanjavur Sambasivam, Dechao Chen, Shamsul A. Bhuiyan, Rebecca Ford, Qin Li","doi":"10.1002/eom2.12451","DOIUrl":null,"url":null,"abstract":"<p>The productivity of global crop production is under threat caused by various biotic and abiotic adverse conditions, such as plant diseases and pests, which are responsible for 20%–40% of global crop losses estimated at a value of USD 220 billion, and can be further exacerbated by climate change. Agricultural industries are calling for game-changer technologies to enable productive and sustainable farming. Carbon dots (C-dots) are carbon-based nanoparticles, smaller than 50 nm, exhibiting unique opto-electro-properties. They have been shown to have positive impact on managing diverse biotic and abiotic stresses faced by the crops. Owing to their versatile carbon chemistry, the surface functionalities of C-dots can be readily tuned to regulate plant physiological processes. This review is focussed on establishing the correlations between the physiochemical properties of C-dots and their impacts on plants growth and health. The summary of the literature demonstrates that C-dots hold great promise in improving plant tolerance to heat, drought, toxic chemicals, and invading pathogens.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12451","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The productivity of global crop production is under threat caused by various biotic and abiotic adverse conditions, such as plant diseases and pests, which are responsible for 20%–40% of global crop losses estimated at a value of USD 220 billion, and can be further exacerbated by climate change. Agricultural industries are calling for game-changer technologies to enable productive and sustainable farming. Carbon dots (C-dots) are carbon-based nanoparticles, smaller than 50 nm, exhibiting unique opto-electro-properties. They have been shown to have positive impact on managing diverse biotic and abiotic stresses faced by the crops. Owing to their versatile carbon chemistry, the surface functionalities of C-dots can be readily tuned to regulate plant physiological processes. This review is focussed on establishing the correlations between the physiochemical properties of C-dots and their impacts on plants growth and health. The summary of the literature demonstrates that C-dots hold great promise in improving plant tolerance to heat, drought, toxic chemicals, and invading pathogens.