Isoflurane Preconditioning Alleviates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting miR-195-3p Expression.

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Toxicology Pub Date : 2024-07-01 Epub Date: 2024-05-08 DOI:10.1007/s12012-024-09869-y
Xiaofei Han, Hongyuan Kan, Jingyi Shi, Shaoke Hou, Xinyu Yao
{"title":"Isoflurane Preconditioning Alleviates Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Inhibiting miR-195-3p Expression.","authors":"Xiaofei Han, Hongyuan Kan, Jingyi Shi, Shaoke Hou, Xinyu Yao","doi":"10.1007/s12012-024-09869-y","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the role of microRNA-195-3p (miR-195-3p) in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. AC16 human cardiomyocyte cells were cultured and pretreated with different concentrations of isoflurane (ISO) (1%, 2%, and 3%), followed by 6 h each of hypoxia and reoxygenation to construct H/R cell models. The optimum ISO concentration was assessed based on the cell viability. miR-195-3p expression was regulated by in vitro cell transfection. Cell viability was determined by MTT assay, and apoptosis was evaluated by flow cytometry. The levels of myocardial injury and inflammation were determined by enzyme-linked immunosorbent assay. Compared with the control group, the cell viability of the H/R group had significantly decreased and that of ISO pretreatment had increased in a dose-dependent manner. Therefore, we selected a 2% ISO concentration for pretreatment. MiR-195-3p expression had significantly increased in the H/R group and decreased after 2% ISO pretreatment. Additionally, the number of apoptotic cells and the levels of lactate dehydrogenase, creatine kinase-myoglobin binding, cardiac troponin I, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α had increased significantly. ISO preconditioning inhibited H/R-induced AC16 cell damage, whereas miR-195-3p overexpression reversed the protective effects of ISO on cardiomyocytes. The expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was reduced in the H/R-induced AC16 cells, and PTEN is a downstream target gene of miR-195-3p. Preconditioning with 2% ISO plays a protective role in H/R-induced AC16 cell damage by inhibiting miR-195-3p expression.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":"637-645"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-024-09869-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the role of microRNA-195-3p (miR-195-3p) in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. AC16 human cardiomyocyte cells were cultured and pretreated with different concentrations of isoflurane (ISO) (1%, 2%, and 3%), followed by 6 h each of hypoxia and reoxygenation to construct H/R cell models. The optimum ISO concentration was assessed based on the cell viability. miR-195-3p expression was regulated by in vitro cell transfection. Cell viability was determined by MTT assay, and apoptosis was evaluated by flow cytometry. The levels of myocardial injury and inflammation were determined by enzyme-linked immunosorbent assay. Compared with the control group, the cell viability of the H/R group had significantly decreased and that of ISO pretreatment had increased in a dose-dependent manner. Therefore, we selected a 2% ISO concentration for pretreatment. MiR-195-3p expression had significantly increased in the H/R group and decreased after 2% ISO pretreatment. Additionally, the number of apoptotic cells and the levels of lactate dehydrogenase, creatine kinase-myoglobin binding, cardiac troponin I, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α had increased significantly. ISO preconditioning inhibited H/R-induced AC16 cell damage, whereas miR-195-3p overexpression reversed the protective effects of ISO on cardiomyocytes. The expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was reduced in the H/R-induced AC16 cells, and PTEN is a downstream target gene of miR-195-3p. Preconditioning with 2% ISO plays a protective role in H/R-induced AC16 cell damage by inhibiting miR-195-3p expression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异氟醚预处理通过抑制 miR-195-3p 表达缓解缺氧/再氧诱导的心肌细胞损伤
研究microRNA-195-3p(miR-195-3p)在缺氧/复氧(H/R)诱导的心肌细胞损伤中的作用。培养 AC16 人心肌细胞并用不同浓度的异氟醚(ISO)(1%、2% 和 3%)预处理,然后分别缺氧和复氧 6 小时,构建 H/R 细胞模型。体外细胞转染调节了 miR-195-3p 的表达。细胞活力由 MTT 法测定,细胞凋亡由流式细胞术评估。心肌损伤和炎症水平通过酶联免疫吸附试验测定。与对照组相比,H/R 组的细胞存活率明显降低,而 ISO 预处理组的细胞存活率则呈剂量依赖性增加。因此,我们选择了 2% 浓度的 ISO 进行预处理。H/R组的MiR-195-3p表达量明显增加,而2% ISO预处理后表达量减少。此外,凋亡细胞的数量和乳酸脱氢酶、肌酸激酶-肌红蛋白结合率、心肌肌钙蛋白I、白细胞介素(IL)-1β、IL-6和肿瘤坏死因子-α的水平也明显增加。ISO 预处理抑制了 H/R 诱导的 AC16 细胞损伤,而 miR-195-3p 的过表达逆转了 ISO 对心肌细胞的保护作用。H/R诱导的AC16细胞中10号染色体上缺失的磷酸酶和天丝同源物(PTEN)的表达减少,而PTEN是miR-195-3p的下游靶基因。2% ISO预处理通过抑制miR-195-3p的表达,对H/R诱导的AC16细胞损伤起到保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
期刊最新文献
Correction: Novel Insights into Causal Effects of Serum Lipids and Apolipoproteins on Cardiovascular Morpho-Functional Phenotypes. Unveiling the Mechanism of Protective Effects of Tanshinone as a New Fighter Against Cardiovascular Diseases: A Systematic Review. Protective Effect of Berberine Nanoparticles Against Cardiotoxic Effects of Arsenic Trioxide. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Advances in Factors Affecting ALDH2 Activity and its Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1