An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Isoquercitrin in Doxorubicin-Induced Cardiotoxicity: Identification of Novel Genes.

IF 3.4 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Toxicology Pub Date : 2025-02-18 DOI:10.1007/s12012-025-09968-4
Habib Alam, Wei Bailing, Feng Zhao, Hayan Ullah, Inam Ullah, Muhsin Ali, Ijaz Ullah, Reyisha Tuerhong, Luying Zhang, Lei Shi
{"title":"An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Isoquercitrin in Doxorubicin-Induced Cardiotoxicity: Identification of Novel Genes.","authors":"Habib Alam, Wei Bailing, Feng Zhao, Hayan Ullah, Inam Ullah, Muhsin Ali, Ijaz Ullah, Reyisha Tuerhong, Luying Zhang, Lei Shi","doi":"10.1007/s12012-025-09968-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiotoxicity, a severe side effect of cytotoxic drugs like doxorubicin (DOX), can lead to cardiomyopathy and heart failure, significantly impacting patient prognosis. This study investigates the molecular mechanisms of DOX-induced cardiotoxicity and explores isoquercitrin (IQC) as a potential therapeutic agent. RNA-sequencing analysis revealed 7855 dysregulated genes in DOX vs. Control and 3853 in DOX + IQC vs. DOX groups. Functional enrichment analysis of upregulated genes in the DOX vs. Control group highlighted cytokine-cytokine receptor interaction and calcium signaling pathways as significant immune-related KEGG pathways. Immune genes were shortlisted based on inflammatory functions, followed by protein-protein interaction analysis and hub gene identification. This process revealed IL6, IL1B, IL10, CCL19, CD27, CSF1R, ADRB2, GDF15, TNFRSF10B, and PADI4 as the top 10 interacting immune hub genes. Validation in the DOX + IQC vs. DOX group showed that IQC downregulated CCL19, IL10, PADI4, and CSF1R genes. Computational drug design techniques, including virtual screening and molecular dynamic simulations, identified promising targets for IQC. These targets were experimentally validated using RT-qPCR in AC16 cell lines under four conditions: control, DOX, low dose DOX + IQC, and high dose DOX + IQC. The study demonstrates that IQC significantly reduces inflammation and oxidative stress in human AC16 cardiomyocyte cell line by downregulating inflammatory and stress pathways induced by DOX. It concludes that CCL19 and PADI4 are crucial immune biomarkers for treating DOX-induced cardiotoxicity using IQC, providing insights into potential therapeutic strategies using plant-based compounds to mitigate the cardiotoxic effects of DOX in cancer treatment.</p>","PeriodicalId":9570,"journal":{"name":"Cardiovascular Toxicology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12012-025-09968-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiotoxicity, a severe side effect of cytotoxic drugs like doxorubicin (DOX), can lead to cardiomyopathy and heart failure, significantly impacting patient prognosis. This study investigates the molecular mechanisms of DOX-induced cardiotoxicity and explores isoquercitrin (IQC) as a potential therapeutic agent. RNA-sequencing analysis revealed 7855 dysregulated genes in DOX vs. Control and 3853 in DOX + IQC vs. DOX groups. Functional enrichment analysis of upregulated genes in the DOX vs. Control group highlighted cytokine-cytokine receptor interaction and calcium signaling pathways as significant immune-related KEGG pathways. Immune genes were shortlisted based on inflammatory functions, followed by protein-protein interaction analysis and hub gene identification. This process revealed IL6, IL1B, IL10, CCL19, CD27, CSF1R, ADRB2, GDF15, TNFRSF10B, and PADI4 as the top 10 interacting immune hub genes. Validation in the DOX + IQC vs. DOX group showed that IQC downregulated CCL19, IL10, PADI4, and CSF1R genes. Computational drug design techniques, including virtual screening and molecular dynamic simulations, identified promising targets for IQC. These targets were experimentally validated using RT-qPCR in AC16 cell lines under four conditions: control, DOX, low dose DOX + IQC, and high dose DOX + IQC. The study demonstrates that IQC significantly reduces inflammation and oxidative stress in human AC16 cardiomyocyte cell line by downregulating inflammatory and stress pathways induced by DOX. It concludes that CCL19 and PADI4 are crucial immune biomarkers for treating DOX-induced cardiotoxicity using IQC, providing insights into potential therapeutic strategies using plant-based compounds to mitigate the cardiotoxic effects of DOX in cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cardiovascular Toxicology
Cardiovascular Toxicology 医学-毒理学
CiteScore
6.60
自引率
3.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: Cardiovascular Toxicology is the only journal dedicated to publishing contemporary issues, timely reviews, and experimental and clinical data on toxicological aspects of cardiovascular disease. CT publishes papers that will elucidate the effects, molecular mechanisms, and signaling pathways of environmental toxicants on the cardiovascular system. Also covered are the detrimental effects of new cardiovascular drugs, and cardiovascular effects of non-cardiovascular drugs, anti-cancer chemotherapy, and gene therapy. In addition, Cardiovascular Toxicology reports safety and toxicological data on new cardiovascular and non-cardiovascular drugs.
期刊最新文献
An Integrated Network Pharmacology and RNA-seq Approach for Exploring the Protective Effect of Isoquercitrin in Doxorubicin-Induced Cardiotoxicity: Identification of Novel Genes. NADPH Oxidases in Cancer Therapy-Induced Cardiotoxicity: Mechanisms and Therapeutic Approaches. RNF146 Alleviates Myocardial Ischemia/Reperfusion Injury by Regulating the Ubiquitination-Mediated Degradation of DAPK1 to Inhibit Ferroptosis. Sigma-1 Receptor Specific Biological Functions, Protective Role, and Therapeutic Potential in Cardiovascular Diseases. Famciclovir Ameliorates Platelet Activation and Thrombosis by AhR-Regulated Autophagy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1