Mohamed S. Gad , Nehal M. Elsherbiny , Dalia R. El-Bassouny , Nesreen M. Omar , Safinaz M. Mahmoud , Mohamed Al-Shabrawey , Amany Tawfik
{"title":"Exploring the role of Müller cells-derived exosomes in diabetic retinopathy","authors":"Mohamed S. Gad , Nehal M. Elsherbiny , Dalia R. El-Bassouny , Nesreen M. Omar , Safinaz M. Mahmoud , Mohamed Al-Shabrawey , Amany Tawfik","doi":"10.1016/j.mvr.2024.104695","DOIUrl":null,"url":null,"abstract":"<div><p>Exosomes are nanosized vesicles that have been reported as cargo-delivering vehicles between cells. Müller cells play a crucial role in the pathogenesis of diabetic retinopathy (DR). Activated Müller cells in the diabetic retina mediate disruption of barrier integrity and neovascularization. Endothelial cells constitute the inner blood-retinal barrier (BRB). Herein, we aim to evaluate the effect of Müller cell-derived exosomes on endothelial cell viability and barrier function under normal and hyperglycemic conditions. Müller cell-derived exosomes were isolated and characterized using Western blotting, nanoparticle tracking, and electron microscopy. The uptake of Müller cells-derived exosomes by the human retinal endothelial cells (HRECs) was monitored by labeling exosomes with PKH67. Endothelial cell vitality after treatment by exosomes under normo- and hypoglycemic conditions was checked by MTT assay and Western blot for apoptotic proteins. The barrier function of HRECs was evaluated by analysis of ZO-1 and transcellular electrical resistance (TER) using ECIS. Additionally, intracellular Ca<sup>+2</sup> in HRECs was assessed by spectrofluorimetry. Analysis of the isolated exosomes showed a non-significant change in the number of exosomes isolated from both normal and hyperglycemic condition media, however, the average size of exosomes isolated from the hyperglycemic group showed a significant rise when compared to that of the normoglycemic group. Müller cells derived exosomes from hyperglycemic condition media markedly reduced HRECs cell count, increased caspase-3 and Annexin V, decreased ZO-1 levels and TER, and increased intracellular Ca<sup>+</sup> when compared to other groups. However, treatment of HRECs under hyperglycemia with normo-glycemic Müller cells-derived exosomes significantly decreased cell death, preserved cellular integrity and barrier function, and reduced intracellular Ca<sup>+2</sup>. Collectively, Müller cell-derived exosomes play a remarkable role in the pathological changes associated with hyperglycemia-induced inner barrier dysfunction in DR. Further in vivo research will help in understanding the role of exosomes as therapeutic targets and/or delivery systems for DR.</p></div>","PeriodicalId":18534,"journal":{"name":"Microvascular research","volume":"154 ","pages":"Article 104695"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microvascular research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002628622400044X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes are nanosized vesicles that have been reported as cargo-delivering vehicles between cells. Müller cells play a crucial role in the pathogenesis of diabetic retinopathy (DR). Activated Müller cells in the diabetic retina mediate disruption of barrier integrity and neovascularization. Endothelial cells constitute the inner blood-retinal barrier (BRB). Herein, we aim to evaluate the effect of Müller cell-derived exosomes on endothelial cell viability and barrier function under normal and hyperglycemic conditions. Müller cell-derived exosomes were isolated and characterized using Western blotting, nanoparticle tracking, and electron microscopy. The uptake of Müller cells-derived exosomes by the human retinal endothelial cells (HRECs) was monitored by labeling exosomes with PKH67. Endothelial cell vitality after treatment by exosomes under normo- and hypoglycemic conditions was checked by MTT assay and Western blot for apoptotic proteins. The barrier function of HRECs was evaluated by analysis of ZO-1 and transcellular electrical resistance (TER) using ECIS. Additionally, intracellular Ca+2 in HRECs was assessed by spectrofluorimetry. Analysis of the isolated exosomes showed a non-significant change in the number of exosomes isolated from both normal and hyperglycemic condition media, however, the average size of exosomes isolated from the hyperglycemic group showed a significant rise when compared to that of the normoglycemic group. Müller cells derived exosomes from hyperglycemic condition media markedly reduced HRECs cell count, increased caspase-3 and Annexin V, decreased ZO-1 levels and TER, and increased intracellular Ca+ when compared to other groups. However, treatment of HRECs under hyperglycemia with normo-glycemic Müller cells-derived exosomes significantly decreased cell death, preserved cellular integrity and barrier function, and reduced intracellular Ca+2. Collectively, Müller cell-derived exosomes play a remarkable role in the pathological changes associated with hyperglycemia-induced inner barrier dysfunction in DR. Further in vivo research will help in understanding the role of exosomes as therapeutic targets and/or delivery systems for DR.
期刊介绍:
Microvascular Research is dedicated to the dissemination of fundamental information related to the microvascular field. Full-length articles presenting the results of original research and brief communications are featured.
Research Areas include:
• Angiogenesis
• Biochemistry
• Bioengineering
• Biomathematics
• Biophysics
• Cancer
• Circulatory homeostasis
• Comparative physiology
• Drug delivery
• Neuropharmacology
• Microvascular pathology
• Rheology
• Tissue Engineering.