Immunohistochemical and Morphometric Assessment on the Biological Function and Vascular Endothelial Cells in the Initial Process of Cortical Porosity in Mice With PTH Administration.

IF 1.9 4区 生物学 Q4 CELL BIOLOGY Journal of Histochemistry & Cytochemistry Pub Date : 2024-05-01 Epub Date: 2024-05-10 DOI:10.1369/00221554241247883
Miki Abe, Tomoka Hasegawa, Hiromi Hongo, Tomomaya Yamamoto, Yan Shi, Jiaxin Cui, Xuanyu Liu, Qi Yao, Hotaka Ishizu, Haruhi Maruoka, Hirona Yoshino, Mai Haraguchi-Kitakamae, Tomohiro Shimizu, Norio Amizuka
{"title":"Immunohistochemical and Morphometric Assessment on the Biological Function and Vascular Endothelial Cells in the Initial Process of Cortical Porosity in Mice With PTH Administration.","authors":"Miki Abe, Tomoka Hasegawa, Hiromi Hongo, Tomomaya Yamamoto, Yan Shi, Jiaxin Cui, Xuanyu Liu, Qi Yao, Hotaka Ishizu, Haruhi Maruoka, Hirona Yoshino, Mai Haraguchi-Kitakamae, Tomohiro Shimizu, Norio Amizuka","doi":"10.1369/00221554241247883","DOIUrl":null,"url":null,"abstract":"<p><p>To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":" ","pages":"309-327"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histochemistry & Cytochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554241247883","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To clarify the cellular mechanism of cortical porosity induced by intermittent parathyroid hormone (PTH) administration, we examined the femoral cortical bone of mice that received 40 µg/kg/day (four times a day) human PTH (hPTH) (1-34). The PTH-driven cortical porosity initiated from the metaphyseal region and chronologically expanded toward the diaphysis. Alkaline phosphatase (ALP)-positive osteoblasts in the control mice covered the cortical surface, and endomucin-positive blood vessels were distant from these osteoblasts. In PTH-administered mice, endomucin-reactive blood vessels with TRAP-positive penetrated the ALP-positive osteoblast layer, invading the cortical bone. Statistically, the distance between endomucin-positive blood vessels and the cortical bone surface abated after PTH administration. Transmission electron microscopic observation demonstrated that vascular endothelial cells often pass through the flattened osteoblast layer and accompanied osteoclasts in the deep region of the cortical bone. The cell layers covering mature osteoblasts thickened with PTH administration and exhibited ALP, α-smooth muscle actin (αSMA), vascular cell adhesion molecule-1 (VCAM1), and receptor activator of NF-κB ligand (RANKL). Within these cell layers, osteoclasts were found near endomucin-reactive blood vessels. In PTH-administered femora, osteocytes secreted Dkk1, a Wnt inhibitor that affects angiogenesis, and blood vessels exhibited plasmalemma vesicle-associated protein, an angiogenic molecule. In summary, endomucin-positive blood vessels, when accompanied by osteoclasts in the ALP/αSMA/VCAM1/RANKL-reactive osteoblastic cell layers, invade the cortical bone, potentially due to the action of osteocyte-derived molecules such as DKK1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对服用 PTH 的小鼠皮质疏松初始过程中的生物功能和血管内皮细胞进行免疫组化和形态计量学评估
为了阐明间歇性服用甲状旁腺激素(PTH)诱导皮质多孔的细胞机制,我们对每天服用40微克/千克(每天四次)人PTH(hPTH)(1-34)的小鼠的股骨皮质骨进行了研究。PTH 驱动的皮质多孔性从骺区开始,并按时间顺序向干骺端扩展。对照组小鼠碱性磷酸酶(ALP)阳性的成骨细胞覆盖了皮质表面,内粘蛋白阳性的血管远离这些成骨细胞。在注射了 PTH 的小鼠中,TRAP 阳性的内粘蛋白反应血管穿透了 ALP 阳性的成骨细胞层,侵入了骨皮质。据统计,服用 PTH 后,内黏蛋白阳性血管与骨皮质表面之间的距离缩短。透射电子显微镜观察表明,血管内皮细胞经常穿过扁平的成骨细胞层,并伴随破骨细胞进入骨皮质深层区域。服用 PTH 后,覆盖成熟成骨细胞的细胞层增厚,并显示出 ALP、α-平滑肌肌动蛋白(αSMA)、血管细胞粘附分子-1(VCAM1)和 NF-κB 配体受体激活剂(RANKL)。在这些细胞层中,破骨细胞靠近内黏蛋白反应血管。在注射了 PTH 的股骨中,成骨细胞分泌 Dkk1(一种影响血管生成的 Wnt 抑制剂),而血管则显示出质膜囊泡相关蛋白(一种血管生成分子)。总之,当ALP/αSMA/VCAM1/RANKL反应性成骨细胞层中的破骨细胞伴随着内粘蛋白阳性血管侵入皮质骨时,可能是由于成骨细胞衍生分子(如DKK1)的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
32
审稿时长
1 months
期刊介绍: Journal of Histochemistry & Cytochemistry (JHC) has been a pre-eminent cell biology journal for over 50 years. Published monthly, JHC offers primary research articles, timely reviews, editorials, and perspectives on the structure and function of cells, tissues, and organs, as well as mechanisms of development, differentiation, and disease. JHC also publishes new developments in microscopy and imaging, especially where imaging techniques complement current genetic, molecular and biochemical investigations of cell and tissue function. JHC offers generous space for articles and recognizing the value of images that reveal molecular, cellular and tissue organization, offers free color to all authors.
期刊最新文献
Role of the Pancreatic Islet Microvasculature in Health and Disease. Trefoil factor protein 3 (TFF3) as a guardian of the urinary bladder epithelium. Optimizing Re-staining Techniques for the Restoration of Faded Hematoxylin and Eosin-stained Histopathology Slides: A Comparative Study. George Gomori's Contributions to Diabetes Research and the Origins of the Journal of Histochemistry and Cytochemistry. High M2/M1 Macrophage Ratio Observed in Nasal Polyps Formed in Allergic Fungal Rhinosinusitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1