TLR9 promotes monocytic myeloid-derived suppressor cell induction during JEV infection

IF 2.6 4区 医学 Q3 IMMUNOLOGY Microbes and Infection Pub Date : 2024-07-01 DOI:10.1016/j.micinf.2024.105336
Tingting Lian , Weijia Zhang , Haoran Su , Qing Yu , Hongxin Zhang , Qingcui Zou , Haowei Chen , Wenjing Xiong , Nan Zhang , Ke Wang , Ling Zhao , Zhen F. Fu , Min Cui
{"title":"TLR9 promotes monocytic myeloid-derived suppressor cell induction during JEV infection","authors":"Tingting Lian ,&nbsp;Weijia Zhang ,&nbsp;Haoran Su ,&nbsp;Qing Yu ,&nbsp;Hongxin Zhang ,&nbsp;Qingcui Zou ,&nbsp;Haowei Chen ,&nbsp;Wenjing Xiong ,&nbsp;Nan Zhang ,&nbsp;Ke Wang ,&nbsp;Ling Zhao ,&nbsp;Zhen F. Fu ,&nbsp;Min Cui","doi":"10.1016/j.micinf.2024.105336","DOIUrl":null,"url":null,"abstract":"<div><p>Myeloid-derived suppressor cells (MDSCs) are a group of heterologous populations of immature bone marrow cells consisting of progenitor cells of macrophages, dendritic cells and granulocytes. Recent studies have revealed that the accumulation of MDSCs in the mouse spleen plays a pivotal role in suppressing the immune response following JEV infection. However, the mechanisms by which JEV induces MDSCs are poorly understood. Here, it was found that JEV infection induces mitochondrial damage and the release of mitochondrial DNA (mtDNA), which further leads to the activation of TLR9. TLR9 deficiency decreases the M-MDSCs population and their suppressive function both in vitro and in vivo. Moreover, the increase of MHCⅡ expression on antigen-presenting cells and CD28 expression on T cells in TLR9<sup>−/−</sup> mice was positively correlated with M-MDSCs reduction. Accordingly, the survival rate of TLR9<sup>−/−</sup> mice dramatically increased after JEV infection. These findings reveal the connections of mitochondrial damage and TLR9 activation to the induction of M-MDSCs during JEV infection.</p></div>","PeriodicalId":18497,"journal":{"name":"Microbes and Infection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Infection","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1286457924000662","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Myeloid-derived suppressor cells (MDSCs) are a group of heterologous populations of immature bone marrow cells consisting of progenitor cells of macrophages, dendritic cells and granulocytes. Recent studies have revealed that the accumulation of MDSCs in the mouse spleen plays a pivotal role in suppressing the immune response following JEV infection. However, the mechanisms by which JEV induces MDSCs are poorly understood. Here, it was found that JEV infection induces mitochondrial damage and the release of mitochondrial DNA (mtDNA), which further leads to the activation of TLR9. TLR9 deficiency decreases the M-MDSCs population and their suppressive function both in vitro and in vivo. Moreover, the increase of MHCⅡ expression on antigen-presenting cells and CD28 expression on T cells in TLR9−/− mice was positively correlated with M-MDSCs reduction. Accordingly, the survival rate of TLR9−/− mice dramatically increased after JEV infection. These findings reveal the connections of mitochondrial damage and TLR9 activation to the induction of M-MDSCs during JEV infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TLR9能在JEV感染期间促进单核细胞髓源性抑制细胞的诱导。
髓源性抑制细胞(MDSCs)是一组异源的未成熟骨髓细胞群,由巨噬细胞、树突状细胞和粒细胞的祖细胞组成。最近的研究发现,MDSCs 在小鼠脾脏中的积累在抑制 JEV 感染后的免疫反应中起着关键作用。然而,人们对 JEV 诱导 MDSCs 的机制却知之甚少。研究发现,JEV 感染会诱导线粒体损伤和线粒体 DNA(mtDNA)的释放,从而进一步导致 TLR9 的激活。TLR9 缺乏会减少 M-MDSCs 的数量及其在体外和体内的抑制功能。此外,TLR9-/-小鼠抗原递呈细胞上 MHCⅡ 表达和 T 细胞上 CD28 表达的增加与 M-MDSCs 的减少呈正相关。因此,TLR9-/-小鼠在感染 JEV 后的存活率显著增加。这些发现揭示了线粒体损伤和 TLR9 激活与 JEV 感染期间诱导 M-MDSCs 的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbes and Infection
Microbes and Infection 医学-病毒学
CiteScore
12.60
自引率
1.70%
发文量
90
审稿时长
40 days
期刊介绍: Microbes and Infection publishes 10 peer-reviewed issues per year in all fields of infection and immunity, covering the different levels of host-microbe interactions, and in particular: the molecular biology and cell biology of the crosstalk between hosts (human and model organisms) and microbes (viruses, bacteria, parasites and fungi), including molecular virulence and evasion mechanisms. the immune response to infection, including pathogenesis and host susceptibility. emerging human infectious diseases. systems immunology. molecular epidemiology/genetics of host pathogen interactions. microbiota and host "interactions". vaccine development, including novel strategies and adjuvants. Clinical studies, accounts of clinical trials and biomarker studies in infectious diseases are within the scope of the journal. Microbes and Infection publishes articles on human pathogens or pathogens of model systems. However, articles on other microbes can be published if they contribute to our understanding of basic mechanisms of host-pathogen interactions. Purely descriptive and preliminary studies are discouraged.
期刊最新文献
Nano-Enhanced Benzylpenicillin: Bridging Antibacterial Action with Anti-Inflammatory Potential against Antibiotic-Resistant Bacteria. TGEV nonstructural protein ORF3b upregulates the expression of SLA-DR at the transcriptional level in monocyte-derived porcine dendritic cells. Bad company? The pericardium microbiome in people investigated for tuberculous pericarditis in an HIV-prevalent setting. miRNAs Regulate the Metabolic Adaptation of Paracoccidioides brasiliensis during Copper Deprivation. Intranasal immunization with poly I:C and CpG ODN adjuvants enhances the protective efficacy against Helicobacter pylori infection in mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1