Sarah Samorodnitsky , Chris H. Wendt , Eric F. Lock
{"title":"Bayesian simultaneous factorization and prediction using multi-omic data","authors":"Sarah Samorodnitsky , Chris H. Wendt , Eric F. Lock","doi":"10.1016/j.csda.2024.107974","DOIUrl":null,"url":null,"abstract":"<div><p>Integrative factorization methods for multi-omic data estimate factors explaining biological variation. Factors can be treated as covariates to predict an outcome and the factorization can be used to impute missing values. However, no available methods provide a comprehensive framework for statistical inference and uncertainty quantification for these tasks. A novel framework, Bayesian Simultaneous Factorization (BSF), is proposed to decompose multi-omics variation into joint and individual structures simultaneously within a probabilistic framework. BSF uses conjugate normal priors and the posterior mode of this model can be estimated by solving a structured nuclear norm-penalized objective that also achieves rank selection and motivates the choice of hyperparameters. BSF is then extended to simultaneously predict a continuous or binary phenotype while estimating latent factors, termed Bayesian Simultaneous Factorization and Prediction (BSFP). BSF and BSFP accommodate concurrent imputation, i.e., imputation during the model-fitting process, and full posterior inference for missing data, including “blockwise” missingness. It is shown via simulation that BSFP is competitive in recovering latent variation structure, and demonstrate the importance of accounting for uncertainty in the estimated factorization within the predictive model. The imputation performance of BSF is examined via simulation under missing-at-random and missing-not-at-random assumptions. Finally, BSFP is used to predict lung function based on the bronchoalveolar lavage metabolome and proteome from a study of HIV-associated obstructive lung disease, revealing multi-omic patterns related to lung function decline and a cluster of patients with obstructive lung disease driven by shared metabolomic and proteomic abundance patterns.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"197 ","pages":"Article 107974"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000586","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrative factorization methods for multi-omic data estimate factors explaining biological variation. Factors can be treated as covariates to predict an outcome and the factorization can be used to impute missing values. However, no available methods provide a comprehensive framework for statistical inference and uncertainty quantification for these tasks. A novel framework, Bayesian Simultaneous Factorization (BSF), is proposed to decompose multi-omics variation into joint and individual structures simultaneously within a probabilistic framework. BSF uses conjugate normal priors and the posterior mode of this model can be estimated by solving a structured nuclear norm-penalized objective that also achieves rank selection and motivates the choice of hyperparameters. BSF is then extended to simultaneously predict a continuous or binary phenotype while estimating latent factors, termed Bayesian Simultaneous Factorization and Prediction (BSFP). BSF and BSFP accommodate concurrent imputation, i.e., imputation during the model-fitting process, and full posterior inference for missing data, including “blockwise” missingness. It is shown via simulation that BSFP is competitive in recovering latent variation structure, and demonstrate the importance of accounting for uncertainty in the estimated factorization within the predictive model. The imputation performance of BSF is examined via simulation under missing-at-random and missing-not-at-random assumptions. Finally, BSFP is used to predict lung function based on the bronchoalveolar lavage metabolome and proteome from a study of HIV-associated obstructive lung disease, revealing multi-omic patterns related to lung function decline and a cluster of patients with obstructive lung disease driven by shared metabolomic and proteomic abundance patterns.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]