{"title":"Functional time transformation model with applications to digital health","authors":"Rahul Ghosal , Marcos Matabuena , Sujit K. Ghosh","doi":"10.1016/j.csda.2025.108131","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of wearable and sensor technologies now leads to functional predictors which are intrinsically infinite dimensional. While the existing approaches for functional data and survival outcomes lean on the well-established Cox model, the proportional hazard (PH) assumption might not always be suitable in real-world applications. Motivated by physiological signals encountered in digital medicine, we develop a more general and flexible functional time-transformation model for estimating the conditional survival function with both functional and scalar covariates. A partially functional regression model is used to directly model the survival time on the covariates through an unknown monotone transformation and a known error distribution. We use Bernstein polynomials to model the monotone transformation function and the smooth functional coefficients. A sieve method of maximum likelihood is employed for estimation. Numerical simulations illustrate a satisfactory performance of the proposed method in estimation and inference. We demonstrate the application of the proposed model through two case studies involving wearable data i) Understanding the association between diurnal physical activity pattern and all-cause mortality based on accelerometer data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and ii) Modelling Time-to-Hypoglycemia events in a cohort of diabetic patients based on distributional representation of continuous glucose monitoring (CGM) data. The results provide important epidemiological insights into the direct association between survival times and the physiological signals and also exhibit superior predictive performance compared to traditional summary-based biomarkers in the CGM study.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"207 ","pages":"Article 108131"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of wearable and sensor technologies now leads to functional predictors which are intrinsically infinite dimensional. While the existing approaches for functional data and survival outcomes lean on the well-established Cox model, the proportional hazard (PH) assumption might not always be suitable in real-world applications. Motivated by physiological signals encountered in digital medicine, we develop a more general and flexible functional time-transformation model for estimating the conditional survival function with both functional and scalar covariates. A partially functional regression model is used to directly model the survival time on the covariates through an unknown monotone transformation and a known error distribution. We use Bernstein polynomials to model the monotone transformation function and the smooth functional coefficients. A sieve method of maximum likelihood is employed for estimation. Numerical simulations illustrate a satisfactory performance of the proposed method in estimation and inference. We demonstrate the application of the proposed model through two case studies involving wearable data i) Understanding the association between diurnal physical activity pattern and all-cause mortality based on accelerometer data from the National Health and Nutrition Examination Survey (NHANES) 2011-2014 and ii) Modelling Time-to-Hypoglycemia events in a cohort of diabetic patients based on distributional representation of continuous glucose monitoring (CGM) data. The results provide important epidemiological insights into the direct association between survival times and the physiological signals and also exhibit superior predictive performance compared to traditional summary-based biomarkers in the CGM study.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]