An advanced deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading in the Internet of Things
{"title":"An advanced deep reinforcement learning algorithm for three-layer D2D-edge-cloud computing architecture for efficient task offloading in the Internet of Things","authors":"Komeil Moghaddasi , Shakiba Rajabi , Farhad Soleimanian Gharehchopogh , Ali Ghaffari","doi":"10.1016/j.suscom.2024.100992","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Things (IoTs) has transformed the digital landscape by interconnecting billions of devices worldwide, paving the way for smart cities, homes, and industries. With the exponential growth of IoT devices and the vast amount of data they generate, concerns have arisen regarding efficient task-offloading strategies. Traditional cloud and edge computing methods, paired with basic Machine Learning (ML) algorithms, face several challenges in this regard. In this paper, we propose a novel approach to task offloading in a Device-to-Device (D2D)-Edge-Cloud computing using the Rainbow Deep Q-Network (DQN), an advanced Deep Reinforcement Learning (DRL) algorithm. This algorithm utilizes advanced neural networks to optimize task offloading in the three-tier framework. It balances the trade-offs among D2D, Device-to-Edge (D2E), and Device/Edge-to-Cloud (D2C/E2C) communications, benefiting both end users and servers. These networks leverage Deep Learning (DL) to discern patterns, evaluate potential offloading decisions, and adapt in real time to dynamic environments. We compared our proposed algorithm against other state-of-the-art methods. Through rigorous simulations, we achieved remarkable improvements across key metrics: an increase in energy efficiency by 29.8%, a 27.5% reduction in latency, and a 43.1% surge in utility.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"43 ","pages":"Article 100992"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000374","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoTs) has transformed the digital landscape by interconnecting billions of devices worldwide, paving the way for smart cities, homes, and industries. With the exponential growth of IoT devices and the vast amount of data they generate, concerns have arisen regarding efficient task-offloading strategies. Traditional cloud and edge computing methods, paired with basic Machine Learning (ML) algorithms, face several challenges in this regard. In this paper, we propose a novel approach to task offloading in a Device-to-Device (D2D)-Edge-Cloud computing using the Rainbow Deep Q-Network (DQN), an advanced Deep Reinforcement Learning (DRL) algorithm. This algorithm utilizes advanced neural networks to optimize task offloading in the three-tier framework. It balances the trade-offs among D2D, Device-to-Edge (D2E), and Device/Edge-to-Cloud (D2C/E2C) communications, benefiting both end users and servers. These networks leverage Deep Learning (DL) to discern patterns, evaluate potential offloading decisions, and adapt in real time to dynamic environments. We compared our proposed algorithm against other state-of-the-art methods. Through rigorous simulations, we achieved remarkable improvements across key metrics: an increase in energy efficiency by 29.8%, a 27.5% reduction in latency, and a 43.1% surge in utility.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.