{"title":"LESP:A fault-aware internet of things service placement in fog computing","authors":"Hemant Kumar Apat , Bibhudatta Sahoo","doi":"10.1016/j.suscom.2025.101097","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of 5G networks enables increase adoption of Industrial Internet of Things (IIoT) devices which introduces variety of time-sensitive applications requires low-latency, fault-tolerant, and energy-efficient computing environments. Fog computing infrastructure that extends cloud computing capabilities at the network edge to provide computation, communication, and storage resources. Due to the limited computing capacity of the Fog node, it restricts the number of tasks executed. The other key challenges are the risk of hardware and software failure during task execution. These failures tend to disrupt the configuration of fog computing nodes, affecting the reliability and availability of services. As a result, this can negatively impact the overall performance and service level objectives. The fault-tolerant-based IoT service placement problem in the fog computing environment primarily focuses on optimal placement of IoT services on fog and cloud resources with the objective of maximizing fault tolerance while satisfying network and storage capacity constraints. In this study, we compared different community-based techniques Girvan-Newman and Louvain with Integer Linear Programming (ILP) for fault tolerance in fog computing using the Albert-Barabási network model. In addition, it proposed a novel Louvian based on eigenvector centrality service placement (LESP) to improve conventional Louvian methods. The proposed algorithm is simulated in iFogSim2 simulator under three different scenario such as under 100, 200 and 300 nodes. The simulation results exemplify that LESP improves fault tolerance and energy efficiency, with an average improvement of approximately 20% over Girvan-Newman, 25% over ILP, and 12.33% over Louvain. These improvements underscore LESP’s strong efficiency and capability in improving service availability across a wide range of network configurations.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101097"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000174","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of 5G networks enables increase adoption of Industrial Internet of Things (IIoT) devices which introduces variety of time-sensitive applications requires low-latency, fault-tolerant, and energy-efficient computing environments. Fog computing infrastructure that extends cloud computing capabilities at the network edge to provide computation, communication, and storage resources. Due to the limited computing capacity of the Fog node, it restricts the number of tasks executed. The other key challenges are the risk of hardware and software failure during task execution. These failures tend to disrupt the configuration of fog computing nodes, affecting the reliability and availability of services. As a result, this can negatively impact the overall performance and service level objectives. The fault-tolerant-based IoT service placement problem in the fog computing environment primarily focuses on optimal placement of IoT services on fog and cloud resources with the objective of maximizing fault tolerance while satisfying network and storage capacity constraints. In this study, we compared different community-based techniques Girvan-Newman and Louvain with Integer Linear Programming (ILP) for fault tolerance in fog computing using the Albert-Barabási network model. In addition, it proposed a novel Louvian based on eigenvector centrality service placement (LESP) to improve conventional Louvian methods. The proposed algorithm is simulated in iFogSim2 simulator under three different scenario such as under 100, 200 and 300 nodes. The simulation results exemplify that LESP improves fault tolerance and energy efficiency, with an average improvement of approximately 20% over Girvan-Newman, 25% over ILP, and 12.33% over Louvain. These improvements underscore LESP’s strong efficiency and capability in improving service availability across a wide range of network configurations.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.