Signal Propagation in the ATPase Domain of Mycobacterium tuberculosis DNA Gyrase from Dynamical-Nonequilibrium Molecular Dynamics Simulations

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-05-14 DOI:10.1021/acs.biochem.4c00161
Bundit Kamsri, Pharit Kamsri, Auradee Punkvang, Aunlika Chimprasit, Patchreenart Saparpakorn, Supa Hannongbua, James Spencer, A. Sofia F. Oliveira*, Adrian J. Mulholland* and Pornpan Pungpo*, 
{"title":"Signal Propagation in the ATPase Domain of Mycobacterium tuberculosis DNA Gyrase from Dynamical-Nonequilibrium Molecular Dynamics Simulations","authors":"Bundit Kamsri,&nbsp;Pharit Kamsri,&nbsp;Auradee Punkvang,&nbsp;Aunlika Chimprasit,&nbsp;Patchreenart Saparpakorn,&nbsp;Supa Hannongbua,&nbsp;James Spencer,&nbsp;A. Sofia F. Oliveira*,&nbsp;Adrian J. Mulholland* and Pornpan Pungpo*,&nbsp;","doi":"10.1021/acs.biochem.4c00161","DOIUrl":null,"url":null,"abstract":"<p >DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including <i>Mycobacterium tuberculosis</i>, which in 2021 caused &gt;1.5 million deaths worldwide. DNA gyrase is a tetrameric (A<sub>2</sub>B<sub>2</sub>) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of <i>M. tuberculosis</i> GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of <i>M. tuberculosis</i> DNA gyrase relative to those from other bacterial species.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.biochem.4c00161","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00161","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA gyrases catalyze negative supercoiling of DNA, are essential for bacterial DNA replication, transcription, and recombination, and are important antibacterial targets in multiple pathogens, including Mycobacterium tuberculosis, which in 2021 caused >1.5 million deaths worldwide. DNA gyrase is a tetrameric (A2B2) protein formed from two subunit types: gyrase A (GyrA) carries the breakage-reunion active site, whereas gyrase B (GyrB) catalyzes ATP hydrolysis required for energy transduction and DNA translocation. The GyrB ATPase domains dimerize in the presence of ATP to trap the translocated DNA (T-DNA) segment as a first step in strand passage, for which hydrolysis of one of the two ATPs and release of the resulting inorganic phosphate is rate-limiting. Here, dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations of the dimeric 43 kDa N-terminal fragment of M. tuberculosis GyrB show how events at the ATPase site (dissociation/hydrolysis of bound nucleotides) are propagated through communication pathways to other functionally important regions of the GyrB ATPase domain. Specifically, our simulations identify two distinct pathways that respectively connect the GyrB ATPase site to the corynebacteria-specific C-loop, thought to interact with GyrA prior to DNA capture, and to the C-terminus of the GyrB transduction domain, which in turn contacts the C-terminal GyrB topoisomerase-primase (TOPRIM) domain responsible for interactions with GyrA and the centrally bound G-segment DNA. The connection between the ATPase site and the C-loop of dimeric GyrB is consistent with the unusual properties of M. tuberculosis DNA gyrase relative to those from other bacterial species.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从动态-非平衡分子动力学模拟看结核分枝杆菌 DNA 回旋酶 ATP 酶域中的信号传播
DNA 回旋酶催化 DNA 的负超螺旋,对细菌的 DNA 复制、转录和重组至关重要,是包括结核分枝杆菌在内的多种病原体的重要抗菌靶标。DNA 回旋酶是一种四聚体(A2B2)蛋白质,由两种亚基类型组成:回旋酶 A(GyrA)携带断裂重组活性位点,而回旋酶 B(GyrB)催化能量转移和 DNA 易位所需的 ATP 水解。GyrB ATP 酶结构域在 ATP 存在时会二聚化,以捕获转位的 DNA(T-DNA)片段,这是链传导的第一步,其中两个 ATP 之一的水解以及由此产生的无机磷酸的释放是限速过程。在这里,对结核杆菌 GyrB 的 43 kDa N 端二聚体片段进行的动态非平衡分子动力学(D-NEMD)模拟显示了 ATPase 位点的事件(结合核苷酸的解离/水解)是如何通过通信途径传播到 GyrB ATPase 结构域的其他重要功能区的。具体来说,我们的模拟确定了两条不同的途径,它们分别将 GyrB ATPase 位点与被认为在捕获 DNA 之前与 GyrA 相互作用的棒状杆菌特异性 C 环连接起来,以及与 GyrB 转导结构域的 C 端连接起来,后者又与负责与 GyrA 和中心结合的 G 段 DNA 相互作用的 C 端 GyrB 拓扑异构酶-primase(TOPRIM)结构域连接起来。ATPase 位点与二聚体 GyrB 的 C 环之间的联系与结核杆菌 DNA 回旋酶相对于其他细菌物种的不寻常特性是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Fingerprinting Tertiary Structure in Complex RNAs Using Single-Molecule Correlated Chemical Probing. Mammalian Esterase Activity: Implications for Peptide Prodrugs. How ATP and dATP Act as Molecular Switches to Regulate Enzymatic Activity in the Prototypical Bacterial Class Ia Ribonucleotide Reductase. Human CSTF2 RNA Recognition Motif Domain Binds to a U-Rich RNA Sequence through a Multistep Binding Process. Periostin Is a Disulfide-Bonded Homodimer and Forms a Complex with Fibronectin in the Human Skin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1