Nuclear lipid droplet: Guardian of nuclear membrane lipid homeostasis?

IF 6 2区 生物学 Q1 CELL BIOLOGY Current Opinion in Cell Biology Pub Date : 2024-05-13 DOI:10.1016/j.ceb.2024.102370
Toyoshi Fujimoto
{"title":"Nuclear lipid droplet: Guardian of nuclear membrane lipid homeostasis?","authors":"Toyoshi Fujimoto","doi":"10.1016/j.ceb.2024.102370","DOIUrl":null,"url":null,"abstract":"<div><p>Lipid droplets (LDs) are cytoplasmic organelles, but they are also found within the nucleus in small numbers. Nuclear LDs that form at the inner nuclear membrane (INM) often increase in response to perturbation in phosphatidic acid (PA) and/or diacylglycerol (DAG), both implicated in various INM functions. Nuclear LDs also increase upon downregulation of seipin, a protein that can trap PA and DAG in the endoplasmic reticulum. Notably, both PA and DAG appear to be more densely distributed on the surface of nuclear LDs than in the INM. I propose that nuclear LDs play a role in regulating the PA and DAG level in the INM, thereby contributing to the lipid homeostasis in this compartment.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"88 ","pages":"Article 102370"},"PeriodicalIF":6.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000498","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid droplets (LDs) are cytoplasmic organelles, but they are also found within the nucleus in small numbers. Nuclear LDs that form at the inner nuclear membrane (INM) often increase in response to perturbation in phosphatidic acid (PA) and/or diacylglycerol (DAG), both implicated in various INM functions. Nuclear LDs also increase upon downregulation of seipin, a protein that can trap PA and DAG in the endoplasmic reticulum. Notably, both PA and DAG appear to be more densely distributed on the surface of nuclear LDs than in the INM. I propose that nuclear LDs play a role in regulating the PA and DAG level in the INM, thereby contributing to the lipid homeostasis in this compartment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核脂滴:核膜脂质平衡的守护者?
脂滴(LDs)是细胞质细胞器,但在细胞核内也有少量存在。在核内膜(INM)上形成的核脂滴常因磷脂酸(PA)和/或二酰基甘油(DAG)的扰动而增加,这两种物质都与核内膜的各种功能有关。seipin是一种能将PA和DAG捕获在内质网中的蛋白质,当seipin下调时,核LD也会增加。值得注意的是,与 INM 相比,PA 和 DAG 似乎更密集地分布在核 LDs 表面。我认为核 LDs 在调节 INM 中的 PA 和 DAG 水平方面发挥了作用,从而促进了这一区室的脂质平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
期刊最新文献
Interplay between Notch signaling and mechanical forces during developmental patterning processes Design principles of regulatory networks underlying epithelial mesenchymal plasticity in cancer cells Unleashing XIST from X-chromosome inactivation SMC-mediated chromosome organization: Does loop extrusion explain it all? Mechanochemical control systems regulating animal cell size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1