Fungal pellets of Pleurotus ostreatus and Rhizopus stolonifer for biotechnological applications: Characterization and production optimization using Taguchi methodology
Thabata Montserrat Hernández-Cruz , Adriana Jazmín Legorreta-Castañeda , Karina García-Gutiérrez , Marco Polo Carballo-Sánchez , Guadalupe Guerra-Sánchez , Dario Rafael Olicón-Hernández
{"title":"Fungal pellets of Pleurotus ostreatus and Rhizopus stolonifer for biotechnological applications: Characterization and production optimization using Taguchi methodology","authors":"Thabata Montserrat Hernández-Cruz , Adriana Jazmín Legorreta-Castañeda , Karina García-Gutiérrez , Marco Polo Carballo-Sánchez , Guadalupe Guerra-Sánchez , Dario Rafael Olicón-Hernández","doi":"10.1016/j.crbiot.2024.100226","DOIUrl":null,"url":null,"abstract":"<div><p>Filamentous fungi are known for their significant potential in biotechnology, thanks to their versatile enzyme systems with various applications. However, dealing with their growth patterns and structural configurations presents significant challenges. To tackle these issues, fungal pellets are emerging as potential solutions, providing compact biomass aggregates that offer distinct advantages for bioprocesses. This study delves into characterization and optimizing pellet formation for <em>Pleurotus ostreatus</em> and <em>Rhizopus stolonifer</em> using the Taguchi methodology, aiming to enhance their biotechnological applications. By systematically varying parameters such as agitation level (AL), glucose concentration (GC), and inoculum size (IS), we identified key factors influencing pellet formation. Results indicate that <em>P. ostreatus</em> forms pellets in rich media from mycelium, while <em>R. stolonifer</em> requires a minimal medium with pH modifications for pelletization via a coagulative mechanism. The optimization process reveals that agitation level is a crucial factor for maximizing pellet production in both models, while the other factors do not seem to influence the process significantly but impact the morphology and quantity of pellets. The results suggest that by optimizing parameters using the Taguchi method, it is possible to achieve acceptable pellet formation performance in both fungi. Understanding these factors is essential for improving the efficiency of biotechnological processes involving fungal biomass, providing valuable insights into enhancing fungal pellet production for various applications.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000522/pdfft?md5=ef90fc2feefac7698810534899bd7b76&pid=1-s2.0-S2590262824000522-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Filamentous fungi are known for their significant potential in biotechnology, thanks to their versatile enzyme systems with various applications. However, dealing with their growth patterns and structural configurations presents significant challenges. To tackle these issues, fungal pellets are emerging as potential solutions, providing compact biomass aggregates that offer distinct advantages for bioprocesses. This study delves into characterization and optimizing pellet formation for Pleurotus ostreatus and Rhizopus stolonifer using the Taguchi methodology, aiming to enhance their biotechnological applications. By systematically varying parameters such as agitation level (AL), glucose concentration (GC), and inoculum size (IS), we identified key factors influencing pellet formation. Results indicate that P. ostreatus forms pellets in rich media from mycelium, while R. stolonifer requires a minimal medium with pH modifications for pelletization via a coagulative mechanism. The optimization process reveals that agitation level is a crucial factor for maximizing pellet production in both models, while the other factors do not seem to influence the process significantly but impact the morphology and quantity of pellets. The results suggest that by optimizing parameters using the Taguchi method, it is possible to achieve acceptable pellet formation performance in both fungi. Understanding these factors is essential for improving the efficiency of biotechnological processes involving fungal biomass, providing valuable insights into enhancing fungal pellet production for various applications.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.