Juan Morales-García, Antonio Llanes, Francisco Arcas-Túnez, Fernando Terroso-Sáenz
{"title":"Developing Time Series Forecasting Models with Generative Large Language Models","authors":"Juan Morales-García, Antonio Llanes, Francisco Arcas-Túnez, Fernando Terroso-Sáenz","doi":"10.1145/3663485","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, Generative Large Language Models (GLLMs) have made a significant impact in the field of Artificial Intelligence (AI). One of the domains extensively explored for these models is their ability as generators of functional source code for software projects. Nevertheless, their potential as assistants to write the code needed to generate and model Machine Learning (ML) or Deep Learning (DL) architectures has not been fully explored to date. For this reason, this work focuses on evaluating the extent to which different tools based on GLLMs, such as ChatGPT or Copilot, are able to correctly define the source code necessary to generate viable predictive models. The use case defined is the forecasting of a time series that reports the indoor temperature of a greenhouse. The results indicate that, while it is possible to achieve good accuracy metrics with simple predictive models generated by GLLMs, the composition of predictive models with complex architectures using GLLMs is still far from improving the accuracy of predictive models generated by human data scientists.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"25 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3663485","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, Generative Large Language Models (GLLMs) have made a significant impact in the field of Artificial Intelligence (AI). One of the domains extensively explored for these models is their ability as generators of functional source code for software projects. Nevertheless, their potential as assistants to write the code needed to generate and model Machine Learning (ML) or Deep Learning (DL) architectures has not been fully explored to date. For this reason, this work focuses on evaluating the extent to which different tools based on GLLMs, such as ChatGPT or Copilot, are able to correctly define the source code necessary to generate viable predictive models. The use case defined is the forecasting of a time series that reports the indoor temperature of a greenhouse. The results indicate that, while it is possible to achieve good accuracy metrics with simple predictive models generated by GLLMs, the composition of predictive models with complex architectures using GLLMs is still far from improving the accuracy of predictive models generated by human data scientists.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.