Fatemeh Azadi, Heshaam Faili, Mohammad Javad Dousti
{"title":"Mismatching-aware unsupervised translation quality estimation for low-resource languages","authors":"Fatemeh Azadi, Heshaam Faili, Mohammad Javad Dousti","doi":"10.1007/s10579-024-09727-x","DOIUrl":null,"url":null,"abstract":"<p>Translation Quality Estimation (QE) is the task of predicting the quality of machine translation (MT) output without any reference. This task has gained increasing attention as an important component in the practical applications of MT. In this paper, we first propose XLMRScore, which is a cross-lingual counterpart of BERTScore computed via the XLM-RoBERTa (XLMR) model. This metric can be used as a simple unsupervised QE method, nevertheless facing two issues: firstly, the untranslated tokens leading to unexpectedly high translation scores, and secondly, the issue of mismatching errors between source and hypothesis tokens when applying the greedy matching in XLMRScore. To mitigate these issues, we suggest replacing untranslated words with the unknown token and the cross-lingual alignment of the pre-trained model to represent aligned words closer to each other, respectively. We evaluate the proposed method on four low-resource language pairs of the WMT21 QE shared task, as well as a new English<span>\\(\\rightarrow\\)</span>Persian (En-Fa) test dataset introduced in this paper. Experiments show that our method could get comparable results with the supervised baseline for two zero-shot scenarios, i.e., with less than 0.01 difference in Pearson correlation, while outperforming unsupervised rivals in all the low-resource language pairs for above 8%, on average.</p>","PeriodicalId":49927,"journal":{"name":"Language Resources and Evaluation","volume":"128 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Language Resources and Evaluation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10579-024-09727-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Translation Quality Estimation (QE) is the task of predicting the quality of machine translation (MT) output without any reference. This task has gained increasing attention as an important component in the practical applications of MT. In this paper, we first propose XLMRScore, which is a cross-lingual counterpart of BERTScore computed via the XLM-RoBERTa (XLMR) model. This metric can be used as a simple unsupervised QE method, nevertheless facing two issues: firstly, the untranslated tokens leading to unexpectedly high translation scores, and secondly, the issue of mismatching errors between source and hypothesis tokens when applying the greedy matching in XLMRScore. To mitigate these issues, we suggest replacing untranslated words with the unknown token and the cross-lingual alignment of the pre-trained model to represent aligned words closer to each other, respectively. We evaluate the proposed method on four low-resource language pairs of the WMT21 QE shared task, as well as a new English\(\rightarrow\)Persian (En-Fa) test dataset introduced in this paper. Experiments show that our method could get comparable results with the supervised baseline for two zero-shot scenarios, i.e., with less than 0.01 difference in Pearson correlation, while outperforming unsupervised rivals in all the low-resource language pairs for above 8%, on average.
期刊介绍:
Language Resources and Evaluation is the first publication devoted to the acquisition, creation, annotation, and use of language resources, together with methods for evaluation of resources, technologies, and applications.
Language resources include language data and descriptions in machine readable form used to assist and augment language processing applications, such as written or spoken corpora and lexica, multimodal resources, grammars, terminology or domain specific databases and dictionaries, ontologies, multimedia databases, etc., as well as basic software tools for their acquisition, preparation, annotation, management, customization, and use.
Evaluation of language resources concerns assessing the state-of-the-art for a given technology, comparing different approaches to a given problem, assessing the availability of resources and technologies for a given application, benchmarking, and assessing system usability and user satisfaction.