Threshold Network GARCH Model

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Time Series Analysis Pub Date : 2024-05-13 DOI:10.1111/jtsa.12743
Yue Pan, Jiazhu Pan
{"title":"Threshold Network GARCH Model","authors":"Yue Pan,&nbsp;Jiazhu Pan","doi":"10.1111/jtsa.12743","DOIUrl":null,"url":null,"abstract":"<p>Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 6","pages":"910-930"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12743","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阈值网络 GARCH 模型
广义自回归条件异方差(GARCH)模型及其变体已被广泛应用于金融波动率的研究中,而由于参数过多和计算复杂,GARCH 型模型向高维数据的扩展一直是个难题。在本文中,我们提出了一种多变量 GARCH 型模型,该模型可以利用网络结构简化参数化,而网络结构可以适当地指定某些类型的高维数据。由于我们的模型采用了阈值结构,因此还考虑了波动率动态的非对称性。为了使我们的模型能够处理维度极高的数据,我们研究了模型的近时序依赖性(NED),并根据 NED 随机场的极限定理推导出了我们的准最大似然估计器(QMLE)的渐近特性。我们还进行了模拟,以检验我们的理论结果。最后,我们对四组股票的对数收益率拟合了我们的模型,结果表明,如果考虑到网络效应,坏消息对波动性的影响并不一定更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
期刊最新文献
Issue Information Editorial Announcement: Journal of Time Series Analysis Distinguished Authors 2024 Time Series for QFFE: Special Issue of the Journal of Time Series Analysis High-Frequency Instruments and Identification-Robust Inference for Stochastic Volatility Models Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1