{"title":"Bayesian analysis of experimental and observational data: a review and illustration of the BANOVA R package","authors":"Michel Wedel, Chen Dong, Anna Kopyakova","doi":"10.1057/s41270-024-00312-3","DOIUrl":null,"url":null,"abstract":"<p>This article provides a review of the BANOVA R package and an illustration of its uses in Marketing Analytics. The package allows users to conduct regression analyses and analysis of variance for between-subjects, within-subjects, and mixed designs, where the dependent variable follows one of a variety of continuous or discrete distribution functions and the data may have a hierarchical structure. The package uses stan as the underlying computing engine, and enables the calculation of simple effects, floodlight analysis, and mediation analysis. The R package is illustrated through a reanalysis of the observational data by Blake et al. (Psychol Sci 32:315–325, 2021) on the relationship between misogynistic tweets and domestic violence, and of the experimental data by Srna et al. (Psychol Sci 29:1942–1955, 2018) on the perception of multitasking.</p>","PeriodicalId":43041,"journal":{"name":"Journal of Marketing Analytics","volume":"40 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marketing Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41270-024-00312-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a review of the BANOVA R package and an illustration of its uses in Marketing Analytics. The package allows users to conduct regression analyses and analysis of variance for between-subjects, within-subjects, and mixed designs, where the dependent variable follows one of a variety of continuous or discrete distribution functions and the data may have a hierarchical structure. The package uses stan as the underlying computing engine, and enables the calculation of simple effects, floodlight analysis, and mediation analysis. The R package is illustrated through a reanalysis of the observational data by Blake et al. (Psychol Sci 32:315–325, 2021) on the relationship between misogynistic tweets and domestic violence, and of the experimental data by Srna et al. (Psychol Sci 29:1942–1955, 2018) on the perception of multitasking.
期刊介绍:
Data has become the new ore in today’s knowledge economy. However, merely storing and reporting are not enough to thrive in today’s increasingly competitive markets. What is called for is the ability to make sense of all these oceans of data, and to apply those insights to the way companies approach their markets, adjust to changing market conditions, and respond to new competitors.
Marketing analytics lies at the heart of this contemporary wave of data driven decision-making. Companies can no longer survive when they rely on gut instinct to make decisions. Strategic leverage of data is one of the few remaining sources of sustainable competitive advantage. New products can be copied faster than ever before. Staff are becoming less loyal as well as more mobile, and business centers themselves are moving across the globe in a world that is getting flatter and flatter.
The Journal of Marketing Analytics brings together applied research and practice papers in this blossoming field. A unique blend of applied academic research, combined with insights from commercial best practices makes the Journal of Marketing Analytics a perfect companion for academics and practitioners alike. Academics can stay in touch with the latest developments in this field. Marketing analytics professionals can read about the latest trends, and cutting edge academic research in this discipline.
The Journal of Marketing Analytics will feature applied research papers on topics like targeting, segmentation, big data, customer loyalty and lifecycle management, cross-selling, CRM, data quality management, multi-channel marketing, and marketing strategy.
The Journal of Marketing Analytics aims to combine the rigor of carefully controlled scientific research methods with applicability of real world case studies. Our double blind review process ensures that papers are selected on their content and merits alone, selecting the best possible papers in this field.