4 inch Gallium Oxide Field‐Effect Transistors Array with High‐k Ta2O5 as Gate Dielectric by Physical Vapor Deposition

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi-Rapid Research Letters Pub Date : 2024-05-10 DOI:10.1002/pssr.202400046
Zi Chun Liu, Jia Cheng Li, Hui Xia Yang, Han Yang, An Huang, De Dai, Yuan Huang, Yi Yun Zhang, Pui To Lai, Yuan Xiao Ma, Ye Liang Wang
{"title":"4 inch Gallium Oxide Field‐Effect Transistors Array with High‐k Ta2O5 as Gate Dielectric by Physical Vapor Deposition","authors":"Zi Chun Liu, Jia Cheng Li, Hui Xia Yang, Han Yang, An Huang, De Dai, Yuan Huang, Yi Yun Zhang, Pui To Lai, Yuan Xiao Ma, Ye Liang Wang","doi":"10.1002/pssr.202400046","DOIUrl":null,"url":null,"abstract":"Field‐effect transistors (FETs) with ultra‐wide bandgap semiconductor Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> have been fabricated by physical vapor deposition with advantages of low cost, wafer scale, and rapid production. The insulator‐like pristine Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is converted to semiconductor by co‐sputtering Sn with post‐annealing, which demonstrates a 5.6 × 10<jats:sup>7</jats:sup> times higher on‐state current. Importantly, this Sn‐doped Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> sample shows a high breakdown voltage near 500 V. Furthermore, a 4 inch array of Sn‐doped Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> FETs with high‐k Ta<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> gate dielectric has been fabricated on a silicon substrate, successfully showing a large on‐current density of 1.3 mA mm<jats:sup>−1</jats:sup>, a high <jats:italic>I</jats:italic><jats:sub>ON</jats:sub>/<jats:italic>I</jats:italic><jats:sub>OFF</jats:sub> of 2.5 × 10<jats:sup>6</jats:sup>, and a low threshold voltage of 3.9 V, which are extracted from the average 350 devices. This work paves a promising way for Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐based nanoelectronics to serve medium‐high voltage with low cost, rapid, and wafer‐scale production.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400046","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Field‐effect transistors (FETs) with ultra‐wide bandgap semiconductor Ga2O3 have been fabricated by physical vapor deposition with advantages of low cost, wafer scale, and rapid production. The insulator‐like pristine Ga2O3 is converted to semiconductor by co‐sputtering Sn with post‐annealing, which demonstrates a 5.6 × 107 times higher on‐state current. Importantly, this Sn‐doped Ga2O3 sample shows a high breakdown voltage near 500 V. Furthermore, a 4 inch array of Sn‐doped Ga2O3 FETs with high‐k Ta2O5 gate dielectric has been fabricated on a silicon substrate, successfully showing a large on‐current density of 1.3 mA mm−1, a high ION/IOFF of 2.5 × 106, and a low threshold voltage of 3.9 V, which are extracted from the average 350 devices. This work paves a promising way for Ga2O3‐based nanoelectronics to serve medium‐high voltage with low cost, rapid, and wafer‐scale production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用物理气相沉积技术将高 k 值 Ta2O5 用作栅极电介质的 4 英寸氧化镓场效应晶体管阵列
利用物理气相沉积法制造出了超宽带隙半导体 Ga2O3 场效应晶体管 (FET),具有成本低、晶圆规模大和生产速度快等优点。通过共溅射锡和后退火,类似绝缘体的原始 Ga2O3 被转化为半导体,导通电流提高了 5.6 × 107 倍。重要的是,这种掺杂了锡的 Ga2O3 样品显示出接近 500 V 的高击穿电压。此外,我们还在硅衬底上制作了一个 4 英寸的掺锡 Ga2O3 FET 阵列,该阵列采用高 k Ta2O5 栅极电介质,成功地显示出 1.3 mA mm-1 的大导通电流密度、2.5 × 106 的高 ION/IOFF,以及 3.9 V 的低阈值电压,这些都是从平均 350 个器件中提取出来的。这项工作为基于 Ga2O3 的纳米电子器件以低成本、快速和晶圆规模生产服务于中高电压铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
期刊最新文献
Performance Recovery of p‐GaN Etch‐Induced Degradation via Atomic Layer Deposition In Situ N2 Plasma and Postanneal‐Assisted Passivation Wide‐Range Wavelength Light Scattering from Black Silicon Layers: Profits for Perovskite/Si Tandem Solar Cells On the Bulk Photovoltaic Effect in the Characterization of Strained Germanium Microstructures Magnetic Domain and Structural Defects Size in Ultrathin Films Photochemical Fabrication of Ag‐Modified Hierarchical Cu@Cu2O/CuO Nanocomposite Toward Room Temperature NO2 Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1