A. Yu. Alentiev, A. K. Evseev, S. M. Matson, V. P. Makrushin, S. V. Zhuravel, N. V. Borovkova, I. V. Goroncharovskaya, M. S. Makarov, M. V. Storozheva, I. N. Ponomarev, N. A. Belov
{"title":"Hemocompatibility of Promising for ECMO High Permeable Polyacetylenes","authors":"A. Yu. Alentiev, A. K. Evseev, S. M. Matson, V. P. Makrushin, S. V. Zhuravel, N. V. Borovkova, I. V. Goroncharovskaya, M. S. Makarov, M. V. Storozheva, I. N. Ponomarev, N. A. Belov","doi":"10.1134/S2517751624020021","DOIUrl":null,"url":null,"abstract":"<p>A comprehensive study of hemocompatibility and gas permeability of 1,2-disubstituted polyacetylenes, namely poly(1-trimethylsilyl-1-propyne) and poly(4-methyl-2-pentyne), was carried out. The polymers were synthesized started from 1-trimethylsilyl-1-propyne and 4-methyl-2-pentynemonomers on the catalytic systems NbCl<sub>5</sub> and NbCl<sub>5</sub>/<i>n</i>-Bu<sub>4</sub>Sn to form homopolymers containing 50 and 55% <i>cis</i>-units, respectively. The comparison of the obtained polyacetylenes and the thermoplastic polyolefin, poly(4-methyl-1-pentene) that currently is widely used as a thin-film coating of hollow fiber membranes for extracorporeal membrane oxygenation of blood (ECMO), was performed. The investigated polymers are highly hemocompatible as shown by morphofunctional status of blood cells analysis and mesenchymal multipotent stromal bone marrow cells culture of tissue donors. In terms of hemocompatibility, poly(4-methyl-2-pentyne) was superior to poly(1-trimethylsilyl-1-propyne) and was comparable to poly(4-methyl-1-pentene). The studied polyacetylenes were shown to be significantly more permeable on oxygen and carbon dioxide than poly(4-methyl-1-pentene): poly(1-trimethylsilyl-1-propyne) is more permeable in 320 and 400 times, whereas poly(4-methyl-2-pentyne) is more permeable in 60 and 90 times, respectively. These parameters can significantly reduce the contact area of membranes with blood and reduce the size of oxygenators. Since poly(4-methyl-2-pentyne) has the high gas permeability in combination with the hemocompatibility comparable to poly(4-methyl-1-pentene), this polymer can be recommended as a promising material of a selective membrane layer for ECMO technology.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 2","pages":"63 - 70"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive study of hemocompatibility and gas permeability of 1,2-disubstituted polyacetylenes, namely poly(1-trimethylsilyl-1-propyne) and poly(4-methyl-2-pentyne), was carried out. The polymers were synthesized started from 1-trimethylsilyl-1-propyne and 4-methyl-2-pentynemonomers on the catalytic systems NbCl5 and NbCl5/n-Bu4Sn to form homopolymers containing 50 and 55% cis-units, respectively. The comparison of the obtained polyacetylenes and the thermoplastic polyolefin, poly(4-methyl-1-pentene) that currently is widely used as a thin-film coating of hollow fiber membranes for extracorporeal membrane oxygenation of blood (ECMO), was performed. The investigated polymers are highly hemocompatible as shown by morphofunctional status of blood cells analysis and mesenchymal multipotent stromal bone marrow cells culture of tissue donors. In terms of hemocompatibility, poly(4-methyl-2-pentyne) was superior to poly(1-trimethylsilyl-1-propyne) and was comparable to poly(4-methyl-1-pentene). The studied polyacetylenes were shown to be significantly more permeable on oxygen and carbon dioxide than poly(4-methyl-1-pentene): poly(1-trimethylsilyl-1-propyne) is more permeable in 320 and 400 times, whereas poly(4-methyl-2-pentyne) is more permeable in 60 and 90 times, respectively. These parameters can significantly reduce the contact area of membranes with blood and reduce the size of oxygenators. Since poly(4-methyl-2-pentyne) has the high gas permeability in combination with the hemocompatibility comparable to poly(4-methyl-1-pentene), this polymer can be recommended as a promising material of a selective membrane layer for ECMO technology.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.