D. O. Kalmykov, S. A. Shirokih, D. N. Matveev, I. V. Petrova, S. D. Bazhenov
{"title":"Deoxygenation of a CO2 Absorbent Based on Monoethanolamine in Gas–Liquid Membrane Contactors: Dynamic Process Modeling","authors":"D. O. Kalmykov, S. A. Shirokih, D. N. Matveev, I. V. Petrova, S. D. Bazhenov","doi":"10.1134/S2517751624600493","DOIUrl":null,"url":null,"abstract":"<p>The study focuses on the removal of dissolved oxygen from a model monoethanolamine (MEA)-based absorbent to prevent oxidative degradation during the absorption process of flue gas CO<sub>2</sub> removal. A mathematical model was developed to evaluate the deoxygenation parameters in a gas-liquid membrane contactor using composite hollow-fiber membranes with a thin non-porous layer made of a blend of polytrimethylsilylpropyne and polyvinyltrimethylsilane. The modeling results were shown to be in good agreement with experimental data on O<sub>2</sub> removal efficiency. The model was applied to assess the scaling of the membrane system for dissolved O<sub>2</sub> removal to handle an absorbent flow rate of 120 m<sup>3</sup>/h in a hypothetical CO<sub>2</sub> capture plant using absorption technology. The influence of system parameters (absorbent linear flow rate, membrane contactor length, number of membranes in the contactor, initial O<sub>2</sub> concentration in the absorbent) on O<sub>2</sub> removal efficiency was determined. It was shown that to achieve 90% removal of dissolved oxygen, at least 12 membrane modules with a length of 1 meter and a total membrane area of 1800 m<sup>2</sup> are required. Various scenarios of dynamically changing external system parameters (oxygen concentration in the feed, absorbent flow rate) were simulated for the designed membrane system to predict the system’s response.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 4","pages":"248 - 258"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study focuses on the removal of dissolved oxygen from a model monoethanolamine (MEA)-based absorbent to prevent oxidative degradation during the absorption process of flue gas CO2 removal. A mathematical model was developed to evaluate the deoxygenation parameters in a gas-liquid membrane contactor using composite hollow-fiber membranes with a thin non-porous layer made of a blend of polytrimethylsilylpropyne and polyvinyltrimethylsilane. The modeling results were shown to be in good agreement with experimental data on O2 removal efficiency. The model was applied to assess the scaling of the membrane system for dissolved O2 removal to handle an absorbent flow rate of 120 m3/h in a hypothetical CO2 capture plant using absorption technology. The influence of system parameters (absorbent linear flow rate, membrane contactor length, number of membranes in the contactor, initial O2 concentration in the absorbent) on O2 removal efficiency was determined. It was shown that to achieve 90% removal of dissolved oxygen, at least 12 membrane modules with a length of 1 meter and a total membrane area of 1800 m2 are required. Various scenarios of dynamically changing external system parameters (oxygen concentration in the feed, absorbent flow rate) were simulated for the designed membrane system to predict the system’s response.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.