Climate model selection via conformal clustering of spatial functional data

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental and Ecological Statistics Pub Date : 2024-05-11 DOI:10.1007/s10651-024-00616-8
Veronica Villani, Elvira Romano, Jorge Mateu
{"title":"Climate model selection via conformal clustering of spatial functional data","authors":"Veronica Villani, Elvira Romano, Jorge Mateu","doi":"10.1007/s10651-024-00616-8","DOIUrl":null,"url":null,"abstract":"<p>Climate model selection stands as a critical process in climate science and research. It involves choosing the most appropriate climate models to address specific research questions, simulating climate behaviour, or making projections about future climate conditions. This paper proposes a new approach, using spatial functional data analysis, to asses which of the 18 EURO CORDEX simulation models work better for predicting average temperatures in the Campania region (Italy). The method involves two key steps: first, using functional data analysis to process climate variables and select optimal models by a hierarchical clustering procedure; second, validating the chosen models by proposing a new conformal prediction approach to the anomalies associated to each cluster.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"41 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-024-00616-8","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate model selection stands as a critical process in climate science and research. It involves choosing the most appropriate climate models to address specific research questions, simulating climate behaviour, or making projections about future climate conditions. This paper proposes a new approach, using spatial functional data analysis, to asses which of the 18 EURO CORDEX simulation models work better for predicting average temperatures in the Campania region (Italy). The method involves two key steps: first, using functional data analysis to process climate variables and select optimal models by a hierarchical clustering procedure; second, validating the chosen models by proposing a new conformal prediction approach to the anomalies associated to each cluster.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过空间功能数据的保形聚类选择气候模式
气候模式选择是气候科学研究的一个关键过程。它涉及选择最合适的气候模式来解决特定的研究问题、模拟气候行为或预测未来的气候条件。本文提出了一种利用空间功能数据分析的新方法,以评估 18 个 EURO CORDEX 模拟模型中哪一个更适合预测坎帕尼亚地区(意大利)的平均气温。该方法包括两个关键步骤:首先,利用功能数据分析处理气候变量,并通过分层聚类程序选择最佳模型;其次,通过对与每个聚类相关的异常现象提出新的保形预测方法来验证所选模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Ecological Statistics
Environmental and Ecological Statistics 环境科学-环境科学
CiteScore
5.90
自引率
2.60%
发文量
27
审稿时长
>36 weeks
期刊介绍: Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues. Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics. Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.
期刊最新文献
Identifying key drivers of extinction for Chitala populations: data-driven insights from an intraguild predation model using a Bayesian framework Health effects of noise and application of machine learning techniques as prediction tools in noise induced health issues: a systematic review Multivariate Bayesian models with flexible shared interactions for analyzing spatio-temporal patterns of rare cancers A novel hybrid approach based on outlier and error correction methods to predict river discharge using meteorological variables Bayesian design methods for improving the effectiveness of ecosystem monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1