Design and Simulation of Dielectrically Modulated Dual Material Gate-Stack Double-Gate FinFET Biosensor

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY ECS Journal of Solid State Science and Technology Pub Date : 2024-05-10 DOI:10.1149/2162-8777/ad458d
Asmita Pattnaik, S. K. Mohapatra, Ananya Dastidar, Om Prakash Acharya, Naglaa AbdelAll, Basma A El-Badry, Ghada A. Khouqeer, Abdullah N. Alodhayb
{"title":"Design and Simulation of Dielectrically Modulated Dual Material Gate-Stack Double-Gate FinFET Biosensor","authors":"Asmita Pattnaik, S. K. Mohapatra, Ananya Dastidar, Om Prakash Acharya, Naglaa AbdelAll, Basma A El-Badry, Ghada A. Khouqeer, Abdullah N. Alodhayb","doi":"10.1149/2162-8777/ad458d","DOIUrl":null,"url":null,"abstract":"This study developed and evaluated a dual-material gate stack double-gate FinFET-based biosensor (DM-GS-DG FinFET). The device was dielectrically modulated and investigated for molecules, such as streptavidin, gluten, zein, hen egg-white lysozyme, and acetylene tetrabromide, based on current, threshold voltage, subthreshold swing, and switching sensitivity. The influence of charged and neutral biomolecules within the nanocavity on the electric, analog, and radiofrequency parameters was recorded. This study was conducted relative to different dielectric <italic toggle=\"yes\">κ</italic>-values of 12 in terms of the percentage sensitivity improvement (SI%). The results reveal that the percentage of sensitivity I<sub>ON</sub> improves effectively, especially for low <italic toggle=\"yes\">κ</italic>-values, compared with other sensitivity measures. All the sensitivity evaluations indicated that DM-GS-DG-FinFET combined with biomolecules is a viable option for biosensing purposes.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"200 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad458d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed and evaluated a dual-material gate stack double-gate FinFET-based biosensor (DM-GS-DG FinFET). The device was dielectrically modulated and investigated for molecules, such as streptavidin, gluten, zein, hen egg-white lysozyme, and acetylene tetrabromide, based on current, threshold voltage, subthreshold swing, and switching sensitivity. The influence of charged and neutral biomolecules within the nanocavity on the electric, analog, and radiofrequency parameters was recorded. This study was conducted relative to different dielectric κ-values of 12 in terms of the percentage sensitivity improvement (SI%). The results reveal that the percentage of sensitivity ION improves effectively, especially for low κ-values, compared with other sensitivity measures. All the sensitivity evaluations indicated that DM-GS-DG-FinFET combined with biomolecules is a viable option for biosensing purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电介质调制双材料栅极栈双栅极 FinFET 生物传感器的设计与仿真
本研究开发并评估了基于双材料栅极堆叠双栅极 FinFET 的生物传感器(DM-GS-DG FinFET)。根据电流、阈值电压、阈下摆动和开关灵敏度,对该器件进行了介电调制,并对链霉亲和素、谷蛋白、玉米蛋白、母鸡卵白溶菌酶和四溴乙炔等分子进行了研究。记录了纳米腔内带电和中性生物分子对电学、模拟和射频参数的影响。这项研究以灵敏度提高百分比(SI%)来表示 12 个不同的介电κ值。结果显示,与其他灵敏度测量方法相比,ION 灵敏度百分比得到了有效改善,尤其是在低 κ 值的情况下。所有灵敏度评估结果都表明,DM-GS-DG-FinFET 与生物分子相结合是生物传感的可行选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
期刊最新文献
Au-free V/Al/Pt Contacts on n-Al0.85Ga0.15N:Si Surfaces of Far-UVC LEDs Structural Characteristics and Dielectric Properties of Deposited Silver Nanoparticles with Polypyrrole on PET Films for Dielectric Devices Modification of Structural, Optical, and Electrical Properties of PVA/PVP Blend Filled by Nanostructured Titanium Dioxide for Optoelectronic Applications Low Contact Resistance via Quantum Well Structure in Amorphous InMoO Thin Film Transistors Comparative Analysis of 50 MeV Li3+ and 100 MeV O7+ Ion Beam Induced Electrical Modifications in Silicon Photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1