{"title":"System dynamics applied in enterprise engineering – a systematic literature review","authors":"Huda Hussain, Marne De Vries","doi":"10.1108/jm2-05-2023-0082","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to investigate the combined use of System Dynamics (SD) applications in Enterprise Engineering (EE) research and practice. SD application in EE is becoming widely accepted as a tool to support decision-making processes and for capturing relationships within enterprises.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A systematic literature review (SLR) is conducted using a standard SLR method to provide a comprehensive review of existing literature. The search was conducted on ten platforms identifying 30 publications which were analysed through the use and development of a codebook.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The SLR showed that 90% of the result set consisted of peer-reviewed academic conferences and journal papers. The SLR identified a highly dispersed author set of 83 authors. Amongst these authors, Vinay Kulkarni was an active author who has co-authored up to four publications in this research area. The analysis further revealed that the combined use of SD applications and EE is an emerging research area that still needs to develop in maturity. While all phases of EE have received attention, the current research work is more focused on the design phase. The important gap between model development and implementation is identified.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The study elucidates the existing status of interdisciplinary research combining techniques from the SD and EE disciplines, suggesting future research topics that combine the strengths of these existing disciplines.</p><!--/ Abstract__block -->","PeriodicalId":16349,"journal":{"name":"Journal of Modelling in Management","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modelling in Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jm2-05-2023-0082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to investigate the combined use of System Dynamics (SD) applications in Enterprise Engineering (EE) research and practice. SD application in EE is becoming widely accepted as a tool to support decision-making processes and for capturing relationships within enterprises.
Design/methodology/approach
A systematic literature review (SLR) is conducted using a standard SLR method to provide a comprehensive review of existing literature. The search was conducted on ten platforms identifying 30 publications which were analysed through the use and development of a codebook.
Findings
The SLR showed that 90% of the result set consisted of peer-reviewed academic conferences and journal papers. The SLR identified a highly dispersed author set of 83 authors. Amongst these authors, Vinay Kulkarni was an active author who has co-authored up to four publications in this research area. The analysis further revealed that the combined use of SD applications and EE is an emerging research area that still needs to develop in maturity. While all phases of EE have received attention, the current research work is more focused on the design phase. The important gap between model development and implementation is identified.
Originality/value
The study elucidates the existing status of interdisciplinary research combining techniques from the SD and EE disciplines, suggesting future research topics that combine the strengths of these existing disciplines.
期刊介绍:
Journal of Modelling in Management (JM2) provides a forum for academics and researchers with a strong interest in business and management modelling. The journal analyses the conceptual antecedents and theoretical underpinnings leading to research modelling processes which derive useful consequences in terms of management science, business and management implementation and applications. JM2 is focused on the utilization of management data, which is amenable to research modelling processes, and welcomes academic papers that not only encompass the whole research process (from conceptualization to managerial implications) but also make explicit the individual links between ''antecedents and modelling'' (how to tackle certain problems) and ''modelling and consequences'' (how to apply the models and draw appropriate conclusions). The journal is particularly interested in innovative methodological and statistical modelling processes and those models that result in clear and justified managerial decisions. JM2 specifically promotes and supports research writing, that engages in an academically rigorous manner, in areas related to research modelling such as: A priori theorizing conceptual models, Artificial intelligence, machine learning, Association rule mining, clustering, feature selection, Business analytics: Descriptive, Predictive, and Prescriptive Analytics, Causal analytics: structural equation modeling, partial least squares modeling, Computable general equilibrium models, Computer-based models, Data mining, data analytics with big data, Decision support systems and business intelligence, Econometric models, Fuzzy logic modeling, Generalized linear models, Multi-attribute decision-making models, Non-linear models, Optimization, Simulation models, Statistical decision models, Statistical inference making and probabilistic modeling, Text mining, web mining, and visual analytics, Uncertainty-based reasoning models.