{"title":"Making sense of data using automated content analysis: an illustration using archival data from newspaper articles","authors":"Sunil George Mathew","doi":"10.1057/s41270-024-00311-4","DOIUrl":null,"url":null,"abstract":"<p>With the increasing amount of data being generated, marketers and marketing researchers face the challenge of effectively analyzing and interpreting insights from the data. The volume of data poses challenges for humans; however, using automated content analysis techniques frees the researcher to focus on the distilled data. Even though multiple forms of text analysis techniques have been discussed in prior marketing literature, few articles simplify the techniques enough to allow for easy adoption by readers. This article discusses three text analysis techniques and then applies these techniques to a dataset of 1287 newspaper articles following the major demonetization announcement in India. It provides an interesting insight into the life of the Indian citizen faced with a government-mandated drive that demonetized 86% of the currency, endangering everyday retail transactions in a cash-dominated economy. Interesting insights emerging from simple techniques such as comparative word frequencies and sentiment analysis are presented which highlight the coping techniques used by the people to continue retail transactions. The initial desperation led to attempts to use the demonetized currency notes by splurging on gold, liquor, and fuel. Once the awareness about the absence of valid currency seeped in, people focused on more thought-out attempts to sustain normal retail transactions. Further, topic modeling was applied to discover the underlying topics in the data corpus, which further revealed the repertoire of coping strategies used by the people. A topic that stood out in the analysis was related to retail-focused mobile payment services, which subsequently found large-scale acceptance in the economy. The article drives home the point that while automated content analysis may provide a quick and simplified view of the data, the role of the researcher in qualitatively interpreting the data is not trivial.</p>","PeriodicalId":43041,"journal":{"name":"Journal of Marketing Analytics","volume":"17 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marketing Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41270-024-00311-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing amount of data being generated, marketers and marketing researchers face the challenge of effectively analyzing and interpreting insights from the data. The volume of data poses challenges for humans; however, using automated content analysis techniques frees the researcher to focus on the distilled data. Even though multiple forms of text analysis techniques have been discussed in prior marketing literature, few articles simplify the techniques enough to allow for easy adoption by readers. This article discusses three text analysis techniques and then applies these techniques to a dataset of 1287 newspaper articles following the major demonetization announcement in India. It provides an interesting insight into the life of the Indian citizen faced with a government-mandated drive that demonetized 86% of the currency, endangering everyday retail transactions in a cash-dominated economy. Interesting insights emerging from simple techniques such as comparative word frequencies and sentiment analysis are presented which highlight the coping techniques used by the people to continue retail transactions. The initial desperation led to attempts to use the demonetized currency notes by splurging on gold, liquor, and fuel. Once the awareness about the absence of valid currency seeped in, people focused on more thought-out attempts to sustain normal retail transactions. Further, topic modeling was applied to discover the underlying topics in the data corpus, which further revealed the repertoire of coping strategies used by the people. A topic that stood out in the analysis was related to retail-focused mobile payment services, which subsequently found large-scale acceptance in the economy. The article drives home the point that while automated content analysis may provide a quick and simplified view of the data, the role of the researcher in qualitatively interpreting the data is not trivial.
期刊介绍:
Data has become the new ore in today’s knowledge economy. However, merely storing and reporting are not enough to thrive in today’s increasingly competitive markets. What is called for is the ability to make sense of all these oceans of data, and to apply those insights to the way companies approach their markets, adjust to changing market conditions, and respond to new competitors.
Marketing analytics lies at the heart of this contemporary wave of data driven decision-making. Companies can no longer survive when they rely on gut instinct to make decisions. Strategic leverage of data is one of the few remaining sources of sustainable competitive advantage. New products can be copied faster than ever before. Staff are becoming less loyal as well as more mobile, and business centers themselves are moving across the globe in a world that is getting flatter and flatter.
The Journal of Marketing Analytics brings together applied research and practice papers in this blossoming field. A unique blend of applied academic research, combined with insights from commercial best practices makes the Journal of Marketing Analytics a perfect companion for academics and practitioners alike. Academics can stay in touch with the latest developments in this field. Marketing analytics professionals can read about the latest trends, and cutting edge academic research in this discipline.
The Journal of Marketing Analytics will feature applied research papers on topics like targeting, segmentation, big data, customer loyalty and lifecycle management, cross-selling, CRM, data quality management, multi-channel marketing, and marketing strategy.
The Journal of Marketing Analytics aims to combine the rigor of carefully controlled scientific research methods with applicability of real world case studies. Our double blind review process ensures that papers are selected on their content and merits alone, selecting the best possible papers in this field.