{"title":"DCM-Spheroid Morphs Express PADs and Citrullinated Cytoskeletal Proteins.","authors":"Alia Sadiq, Justyna Fert-Bober","doi":"10.1369/00221554241252862","DOIUrl":null,"url":null,"abstract":"<p><p>During investigating the role of peptidylarginine deiminase (PAD) enzymes in dilated cardiomyopathy (DCM), we observed unique spheroid formation in DCM-myofibroblasts that distinguished them from normal cardiac myofibroblasts. The present study aimed to assess the presence of PADs, the extracellular matrix (ECM), and citrullination in DCM spheroids using immunofluorescence staining and imaging techniques. The results revealed that spheroids derived from DCM-myofibroblasts displayed a more distinctive, tightly packed structure compared with those derived from human cardiac fibroblasts. DCM spheroids showed abundant protein expression of the PAD 2, 3, and 4 enzymes. Notably, increased Ki67 protein expression was associated with increased proliferation in DCM spheroids. Cytoskeletal proteins such as Col-1A, vimentin, α-SMA, and F-actin were highly abundant in DCM spheroids. Furthermore, DCM spheroids contained citrullinated cytoskeletal proteins, mainly citrullinated vimentin and citrullinated fibronectin. These observations supported the occurrence of PAD-mediated citrullination of ECM proteins in DCM spheroids. Collectively, these findings describe the distinctive features of DCM spheroids, representing the cellular characteristics of DCM myofibroblasts. Therefore, DCM spheroids can serve as an in vitro model for further investigations of disease morphology and therapeutic efficacy.</p>","PeriodicalId":16079,"journal":{"name":"Journal of Histochemistry & Cytochemistry","volume":" ","pages":"387-397"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histochemistry & Cytochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1369/00221554241252862","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During investigating the role of peptidylarginine deiminase (PAD) enzymes in dilated cardiomyopathy (DCM), we observed unique spheroid formation in DCM-myofibroblasts that distinguished them from normal cardiac myofibroblasts. The present study aimed to assess the presence of PADs, the extracellular matrix (ECM), and citrullination in DCM spheroids using immunofluorescence staining and imaging techniques. The results revealed that spheroids derived from DCM-myofibroblasts displayed a more distinctive, tightly packed structure compared with those derived from human cardiac fibroblasts. DCM spheroids showed abundant protein expression of the PAD 2, 3, and 4 enzymes. Notably, increased Ki67 protein expression was associated with increased proliferation in DCM spheroids. Cytoskeletal proteins such as Col-1A, vimentin, α-SMA, and F-actin were highly abundant in DCM spheroids. Furthermore, DCM spheroids contained citrullinated cytoskeletal proteins, mainly citrullinated vimentin and citrullinated fibronectin. These observations supported the occurrence of PAD-mediated citrullination of ECM proteins in DCM spheroids. Collectively, these findings describe the distinctive features of DCM spheroids, representing the cellular characteristics of DCM myofibroblasts. Therefore, DCM spheroids can serve as an in vitro model for further investigations of disease morphology and therapeutic efficacy.
期刊介绍:
Journal of Histochemistry & Cytochemistry (JHC) has been a pre-eminent cell biology journal for over 50 years. Published monthly, JHC offers primary research articles, timely reviews, editorials, and perspectives on the structure and function of cells, tissues, and organs, as well as mechanisms of development, differentiation, and disease. JHC also publishes new developments in microscopy and imaging, especially where imaging techniques complement current genetic, molecular and biochemical investigations of cell and tissue function. JHC offers generous space for articles and recognizing the value of images that reveal molecular, cellular and tissue organization, offers free color to all authors.