A NAC transcription factor represses a module associated with xyloglucan content and regulates aluminum tolerance.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-09-02 DOI:10.1093/plphys/kiae281
Su Li, Ji Bo Yang, Jia Qi Li, Jing Huang, Ren Fang Shen, Da Li Zeng, Xiao Fang Zhu
{"title":"A NAC transcription factor represses a module associated with xyloglucan content and regulates aluminum tolerance.","authors":"Su Li, Ji Bo Yang, Jia Qi Li, Jing Huang, Ren Fang Shen, Da Li Zeng, Xiao Fang Zhu","doi":"10.1093/plphys/kiae281","DOIUrl":null,"url":null,"abstract":"<p><p>The transcriptional regulation of aluminum (Al) tolerance in plants is largely unknown, although Al toxicity restricts agricultural yields in acidic soils. Here, we identified a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factor that participates in Al tolerance in Arabidopsis (Arabidopsis thaliana). Al substantially induced the transcript and protein levels of ANAC070, and loss-of-function mutants showed remarkably increased Al sensitivity, implying a beneficial role of ANAC070 in plant tolerance to Al toxicity. Further investigation revealed that more Al accumulated in the roots of anac070 mutants, especially in root cell walls, accompanied by a higher hemicellulose and xyloglucan level, implying a possible interaction between ANAC070 and genes that encode proteins responsible for the modification of xyloglucan, including xyloglucan endo-transglycosylase/hydrolase (XTH) or ANAC017. Yeast 1-hybrid analysis revealed a potential interaction between ANAC070 and ANAC017, but not for other XTHs. Furthermore, dual-luciferase reporter assay, RT-qPCR, and GUS analysis revealed that ANAC070 could directly repress the transcript levels of ANAC017, and knockout of ANAC017 in the anac070 mutant partially restored its Al sensitivity phenotype, indicating that ANAC070 contributes to Al tolerance mechanisms other than suppression of ANAC017 expression. Further analysis revealed that the core transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) and its target genes, which control Al tolerance in Arabidopsis, may also be involved in ANAC070-regulated Al tolerance. In summary, we identified a transcription factor, ANAC070, that represses the ANAC017-XTH31 module to regulate Al tolerance in Arabidopsis.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae281","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The transcriptional regulation of aluminum (Al) tolerance in plants is largely unknown, although Al toxicity restricts agricultural yields in acidic soils. Here, we identified a NAM, ATAF1/2, and cup-shaped cotyledon 2 (NAC) transcription factor that participates in Al tolerance in Arabidopsis (Arabidopsis thaliana). Al substantially induced the transcript and protein levels of ANAC070, and loss-of-function mutants showed remarkably increased Al sensitivity, implying a beneficial role of ANAC070 in plant tolerance to Al toxicity. Further investigation revealed that more Al accumulated in the roots of anac070 mutants, especially in root cell walls, accompanied by a higher hemicellulose and xyloglucan level, implying a possible interaction between ANAC070 and genes that encode proteins responsible for the modification of xyloglucan, including xyloglucan endo-transglycosylase/hydrolase (XTH) or ANAC017. Yeast 1-hybrid analysis revealed a potential interaction between ANAC070 and ANAC017, but not for other XTHs. Furthermore, dual-luciferase reporter assay, RT-qPCR, and GUS analysis revealed that ANAC070 could directly repress the transcript levels of ANAC017, and knockout of ANAC017 in the anac070 mutant partially restored its Al sensitivity phenotype, indicating that ANAC070 contributes to Al tolerance mechanisms other than suppression of ANAC017 expression. Further analysis revealed that the core transcription factor SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) and its target genes, which control Al tolerance in Arabidopsis, may also be involved in ANAC070-regulated Al tolerance. In summary, we identified a transcription factor, ANAC070, that represses the ANAC017-XTH31 module to regulate Al tolerance in Arabidopsis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种 NAC 转录因子抑制与木糖含量相关的模块,并调节铝耐受性。
尽管铝毒性限制了酸性土壤中的农业产量,但植物耐铝性的转录调控在很大程度上是未知的。在这里,我们发现了一个参与拟南芥(Arabidopsis thaliana)耐铝性的NAM、ATAF1/2和杯状子叶2(NAC)转录因子。拟南芥对铝的敏感性显著增加,这意味着ANAC070在植物耐受铝毒性方面发挥了有益的作用。进一步研究发现,ANAC070突变体的根中积累了更多的铝,尤其是在根细胞壁中,同时半纤维素和木聚糖的含量也更高,这意味着ANAC070与编码负责修饰木聚糖的蛋白质(包括木聚糖内转糖基酶/水解酶(XTH)或ANAC017)的基因之间可能存在相互作用。酵母杂交分析表明,ANAC070 与 ANAC017 之间存在潜在的相互作用,但与其他 XTH 之间没有相互作用。此外,双荧光素酶报告分析、RT-qPCR和GUS分析表明,ANAC070可直接抑制ANAC017的转录水平,在anac070突变体中敲除ANAC017可部分恢复其对铝的敏感性表型,这表明ANAC070除了抑制ANAC017的表达外,还对铝耐受机制做出了贡献。进一步的分析表明,控制拟南芥耐碱性的核心转录因子 SENSITIVE TO PROTON RHIZOTOXICITY1(STOP1)及其靶基因也可能参与了 ANAC070 调控的耐碱性。总之,我们发现了一个转录因子 ANAC070,它能抑制 ANAC017-XTH31 模块,从而调控拟南芥的耐碱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Transcription factor PagWRKY33 regulates gibberellin signaling and immune receptor pathways in Populus. AlGrow: a graphical interface for easy, fast and accurate area and growth analysis of heterogeneously colored targets. Epigenetic control of T-DNA during transgenesis and pathogenesis. Metabolic Flux Analysis to Increase Oil in Seeds. Mutation of GLR2 confers enhanced glufosinate resistance and salt tolerance in rice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1