Enhancing ionic conductivity and controlling lithium dendrite growth via ferroelectric ceramic Bi4Ti3O12

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of the Taiwan Institute of Chemical Engineers Pub Date : 2024-05-14 DOI:10.1016/j.jtice.2024.105513
Xi Guo , Jiayao Shan , Shuaiqi Gong , Jinting Xu , Qunjie Xu , PengHui Shi , YuLin Min
{"title":"Enhancing ionic conductivity and controlling lithium dendrite growth via ferroelectric ceramic Bi4Ti3O12","authors":"Xi Guo ,&nbsp;Jiayao Shan ,&nbsp;Shuaiqi Gong ,&nbsp;Jinting Xu ,&nbsp;Qunjie Xu ,&nbsp;PengHui Shi ,&nbsp;YuLin Min","doi":"10.1016/j.jtice.2024.105513","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Solid polymer electrolytes (SPEs) have gained numerous research interest in the field of lithium metal batteries. Solid polymer electrolytes have improved safety compared to liquid electrolytes. Despite this, their low ionic conductivity remains a major barrier to practical applications. To overcome the challenge of low ionic conductivity in SPEs, our study introduces a novel approach that integrates ferroelectric ceramics with polymer solid electrolytes.</p></div><div><h3>Methods</h3><p>We used a one-step molten salt method to synthesize Bi<sub>4</sub>Ti<sub>3</sub>O<sub>12</sub> (BIT), combined with a poly (vinylidene difluoride) matrix to form the composite solid-state electrolyte. Through various electrochemical characterizations and COMSOL Multiphysics simulations, we discovered that the ferroelectric properties of BIT significantly increase the dissociation of lithium salts, leading to a greater concentration of mobile lithium ions and more efficient ion transport.</p></div><div><h3>Significant findings</h3><p>This electrolyte showed a remarkable improvement in lithium-ion conductivity, reaching a value of 8.5 × 10<sup>−4</sup> S cm<sup>−1</sup> at room temperature. Batteries made with these composite electrolytes demonstrate superior cycling stability, the capacity retention rates for LFP/SPEs/Li cells remain high, reaching 95 % even after 1,000 cycles at room temperature (25 °C). These findings highlight the promising applications of ferroelectric ceramics in solid-state batteries.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024001718","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Solid polymer electrolytes (SPEs) have gained numerous research interest in the field of lithium metal batteries. Solid polymer electrolytes have improved safety compared to liquid electrolytes. Despite this, their low ionic conductivity remains a major barrier to practical applications. To overcome the challenge of low ionic conductivity in SPEs, our study introduces a novel approach that integrates ferroelectric ceramics with polymer solid electrolytes.

Methods

We used a one-step molten salt method to synthesize Bi4Ti3O12 (BIT), combined with a poly (vinylidene difluoride) matrix to form the composite solid-state electrolyte. Through various electrochemical characterizations and COMSOL Multiphysics simulations, we discovered that the ferroelectric properties of BIT significantly increase the dissociation of lithium salts, leading to a greater concentration of mobile lithium ions and more efficient ion transport.

Significant findings

This electrolyte showed a remarkable improvement in lithium-ion conductivity, reaching a value of 8.5 × 10−4 S cm−1 at room temperature. Batteries made with these composite electrolytes demonstrate superior cycling stability, the capacity retention rates for LFP/SPEs/Li cells remain high, reaching 95 % even after 1,000 cycles at room temperature (25 °C). These findings highlight the promising applications of ferroelectric ceramics in solid-state batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过铁电陶瓷 Bi4Ti3O12 增强离子导电性并控制锂枝晶生长
背景固态聚合物电解质(SPE)在锂金属电池领域获得了广泛的研究兴趣。与液态电解质相比,固态聚合物电解质具有更高的安全性。尽管如此,固态聚合物电解质的低离子电导率仍然是其实际应用的主要障碍。为了克服固态聚合物电解质离子电导率低的难题,我们的研究引入了一种将铁电陶瓷与聚合物固态电解质相结合的新方法。通过各种电化学表征和 COMSOL Multiphysics 仿真,我们发现 BIT 的铁电特性显著提高了锂盐的解离度,从而使移动锂离子的浓度更高,离子传输效率更高。使用这些复合电解质制造的电池具有卓越的循环稳定性,LFP/SPEs/Li 电池的容量保持率很高,在室温(25 °C)下循环 1000 次后仍能达到 95%。这些发现凸显了铁电陶瓷在固态电池中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
期刊最新文献
Emerging Trends in fabrication and modification techniques for bioelectrochemical system electrodes: A review Editorial Board Improved diffusion mapping combined with procrustes analysis for capturing local-global data structures in industrial process monitoring Enhancing oxygen permeability and water content in silicone hydrogels through carboxylic acid and surfactant incorporation A green bulk modification for imparting a green VIPS membrane with antifouling properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1