Wear diagnosis for rail profile data using a novel multidimensional scaling clustering method

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-05-15 DOI:10.1111/mice.13235
D. Shang, Shuai Su, Y. K. Sun, F. Wang, Y. Cao, W. F. Yang, P. Li, J. H. Zhou
{"title":"Wear diagnosis for rail profile data using a novel multidimensional scaling clustering method","authors":"D. Shang, Shuai Su, Y. K. Sun, F. Wang, Y. Cao, W. F. Yang, P. Li, J. H. Zhou","doi":"10.1111/mice.13235","DOIUrl":null,"url":null,"abstract":"The diagnosis of railway system faults is significant for its comfort, efficiency, and safety. The rail surface wear is the key impact factor when considering the health conditions of rails. This paper accomplishes contactless rail wear diagnosis by using multidimensional scaling based on a novel informational dissimilarity measure (IDM) to cluster intact and different worn rail profile data. The IDM uses weighted‐probability distribution of dispersion patterns to extract accurate time domain features from rail profile data, and the loss of information is minimized, which can greatly improve the accuracy for wear diagnosis. All the analyzing data for real experiments are collected by a laser scanner camera on an inspection car, where heavy‐haul railway rails with different types of surface wear are inspected. Experimental results with simulated and reality‐based data show that the proposed methods can identify worn profile data and discriminate different types of worn profiles more effectively when compared with existing methods. Thus, the proposed method offers a new thinking for the diagnosis of rail surface wear for heavy‐haul railways.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13235","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The diagnosis of railway system faults is significant for its comfort, efficiency, and safety. The rail surface wear is the key impact factor when considering the health conditions of rails. This paper accomplishes contactless rail wear diagnosis by using multidimensional scaling based on a novel informational dissimilarity measure (IDM) to cluster intact and different worn rail profile data. The IDM uses weighted‐probability distribution of dispersion patterns to extract accurate time domain features from rail profile data, and the loss of information is minimized, which can greatly improve the accuracy for wear diagnosis. All the analyzing data for real experiments are collected by a laser scanner camera on an inspection car, where heavy‐haul railway rails with different types of surface wear are inspected. Experimental results with simulated and reality‐based data show that the proposed methods can identify worn profile data and discriminate different types of worn profiles more effectively when compared with existing methods. Thus, the proposed method offers a new thinking for the diagnosis of rail surface wear for heavy‐haul railways.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用新型多维缩放聚类方法对轨道剖面数据进行磨损诊断
铁路系统的故障诊断对其舒适性、效率和安全性意义重大。轨道表面磨损是影响轨道健康状况的关键因素。本文基于新颖的信息不相似度量(IDM),使用多维尺度对完好和不同磨损的钢轨轮廓数据进行聚类,从而实现非接触式钢轨磨损诊断。IDM 利用频散模式的加权概率分布从钢轨轮廓数据中提取精确的时域特征,并将信息损失降至最低,从而大大提高了磨损诊断的准确性。实际实验中的所有分析数据都是通过检测车上的激光扫描相机采集的,在检测车上对不同类型表面磨损的重载铁路钢轨进行检测。模拟和实际数据的实验结果表明,与现有方法相比,所提出的方法能更有效地识别磨损轮廓数据并区分不同类型的磨损轮廓。因此,所提出的方法为重载铁路钢轨表面磨损的诊断提供了一种新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Self‐training with Bayesian neural networks and spatial priors for unsupervised domain adaptation in crack segmentation Multifidelity graph neural networks for efficient and accurate mesh‐based partial differential equations surrogate modeling A domain adaptation methodology for enhancing the classification of structural condition states in continuously monitored historical domes Integrated vision language and foundation model for automated estimation of building lowest floor elevation Bridge damage identification based on synchronous statistical moment theory of vehicle–bridge interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1