Development and Validation of a Multimodality Model Based on Whole-Slide Imaging and Biparametric MRI for Predicting Postoperative Biochemical Recurrence in Prostate Cancer.

IF 5.6 Q1 ONCOLOGY Radiology. Imaging cancer Pub Date : 2024-05-01 DOI:10.1148/rycan.230143
Chenhan Hu, Xiaomeng Qiao, Renpeng Huang, Chunhong Hu, Jie Bao, Ximing Wang
{"title":"Development and Validation of a Multimodality Model Based on Whole-Slide Imaging and Biparametric MRI for Predicting Postoperative Biochemical Recurrence in Prostate Cancer.","authors":"Chenhan Hu, Xiaomeng Qiao, Renpeng Huang, Chunhong Hu, Jie Bao, Ximing Wang","doi":"10.1148/rycan.230143","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop and validate a machine learning multimodality model based on preoperative MRI, surgical whole-slide imaging (WSI), and clinical variables for predicting prostate cancer (PCa) biochemical recurrence (BCR) following radical prostatectomy (RP). Materials and Methods In this retrospective study (September 2015 to April 2021), 363 male patients with PCa who underwent RP were divided into training (<i>n</i> = 254; median age, 69 years [IQR, 64-74 years]) and testing (<i>n</i> = 109; median age, 70 years [IQR, 65-75 years]) sets at a ratio of 7:3. The primary end point was biochemical recurrence-free survival. The least absolute shrinkage and selection operator Cox algorithm was applied to select independent clinical variables and construct the clinical signature. The radiomics signature and pathomics signature were constructed using preoperative MRI and surgical WSI data, respectively. A multimodality model was constructed by combining the radiomics signature, pathomics signature, and clinical signature. Using Harrell concordance index (C index), the predictive performance of the multimodality model for BCR was assessed and compared with all single-modality models, including the radiomics signature, pathomics signature, and clinical signature. Results Both radiomics and pathomics signatures achieved good performance for BCR prediction (C index: 0.742 and 0.730, respectively) on the testing cohort. The multimodality model exhibited the best predictive performance, with a C index of 0.860 on the testing set, which was significantly higher than all single-modality models (all <i>P</i> ≤ .01). Conclusion The multimodality model effectively predicted BCR following RP in patients with PCa and may therefore provide an emerging and accurate tool to assist postoperative individualized treatment. <b>Keywords:</b> MR Imaging, Urinary, Pelvis, Comparative Studies <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":"6 3","pages":"e230143"},"PeriodicalIF":5.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Imaging cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/rycan.230143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose To develop and validate a machine learning multimodality model based on preoperative MRI, surgical whole-slide imaging (WSI), and clinical variables for predicting prostate cancer (PCa) biochemical recurrence (BCR) following radical prostatectomy (RP). Materials and Methods In this retrospective study (September 2015 to April 2021), 363 male patients with PCa who underwent RP were divided into training (n = 254; median age, 69 years [IQR, 64-74 years]) and testing (n = 109; median age, 70 years [IQR, 65-75 years]) sets at a ratio of 7:3. The primary end point was biochemical recurrence-free survival. The least absolute shrinkage and selection operator Cox algorithm was applied to select independent clinical variables and construct the clinical signature. The radiomics signature and pathomics signature were constructed using preoperative MRI and surgical WSI data, respectively. A multimodality model was constructed by combining the radiomics signature, pathomics signature, and clinical signature. Using Harrell concordance index (C index), the predictive performance of the multimodality model for BCR was assessed and compared with all single-modality models, including the radiomics signature, pathomics signature, and clinical signature. Results Both radiomics and pathomics signatures achieved good performance for BCR prediction (C index: 0.742 and 0.730, respectively) on the testing cohort. The multimodality model exhibited the best predictive performance, with a C index of 0.860 on the testing set, which was significantly higher than all single-modality models (all P ≤ .01). Conclusion The multimodality model effectively predicted BCR following RP in patients with PCa and may therefore provide an emerging and accurate tool to assist postoperative individualized treatment. Keywords: MR Imaging, Urinary, Pelvis, Comparative Studies Supplemental material is available for this article. © RSNA, 2024.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全滑动成像和双参数磁共振成像的多模态模型的开发与验证,用于预测前列腺癌术后生化复发。
目的 开发并验证一种基于术前磁共振成像、手术全切片成像(WSI)和临床变量的机器学习多模态模型,用于预测前列腺癌(PCa)根治性前列腺切除术(RP)后的生化复发(BCR)。材料与方法 在这项回顾性研究中(2015 年 9 月至 2021 年 4 月),363 名接受前列腺癌根治术的男性 PCa 患者按 7:3 的比例被分为训练组(n = 254;中位年龄 69 岁 [IQR 64-74 岁])和测试组(n = 109;中位年龄 70 岁 [IQR 65-75 岁])。主要终点是无生化复发生存期。采用最小绝对收缩和选择算子 Cox 算法选择独立的临床变量并构建临床特征。放射组学特征和病理组学特征分别使用术前 MRI 和手术 WSI 数据构建。结合放射组学特征、病理组学特征和临床特征,构建了多模态模型。使用哈雷尔一致性指数(C指数)评估多模态模型对BCR的预测性能,并与所有单模态模型(包括放射组学特征、病理组学特征和临床特征)进行比较。结果 放射性组学特征和病理组学特征对测试队列的 BCR 预测均有良好的表现(C 指数分别为 0.742 和 0.730)。多模态模型的预测性能最好,在测试集上的 C 指数为 0.860,明显高于所有单模态模型(所有 P 均小于 0.01)。结论 多模态模型可有效预测PCa患者RP术后的BCR,因此可为术后个体化治疗提供一个新兴的准确工具。关键词磁共振成像、泌尿系统、骨盆、比较研究 本文有补充材料。© RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
2.30%
发文量
0
期刊最新文献
Multifrequency MR Elastography for Tumor Stiffness Outperforms Conventional Imaging and Clinical Variables in Determining Lymphovascular Space Invasion in Endometrial Cancer. Assessing the Value of 68Ga-FAPI PET/CT in Gastric Mucinous Adenocarcinoma or Signet Ring Cell Carcinoma. External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans. Mathematical 3D Liver Model for Surgical versus Ablative Therapy Treatment Planning for Colorectal Liver Metastases: Recommendations from the COLLISION and COLDFIRE Trial Expert Panels. A New Acquisition Protocol for Optimized Dynamic Susceptibility Perfusion Imaging of Brain Tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1