External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans.
Enis C Yilmaz, Stephanie A Harmon, Yan Mee Law, Erich P Huang, Mason J Belue, Yue Lin, David G Gelikman, Kutsev B Ozyoruk, Dong Yang, Ziyue Xu, Jesse Tetreault, Daguang Xu, Lindsey A Hazen, Charisse Garcia, Nathan S Lay, Philip Eclarinal, Antoun Toubaji, Maria J Merino, Bradford J Wood, Sandeep Gurram, Peter L Choyke, Peter A Pinto, Baris Turkbey
求助PDF
{"title":"External Validation of a Previously Developed Deep Learning-based Prostate Lesion Detection Algorithm on Paired External and In-House Biparametric MRI Scans.","authors":"Enis C Yilmaz, Stephanie A Harmon, Yan Mee Law, Erich P Huang, Mason J Belue, Yue Lin, David G Gelikman, Kutsev B Ozyoruk, Dong Yang, Ziyue Xu, Jesse Tetreault, Daguang Xu, Lindsey A Hazen, Charisse Garcia, Nathan S Lay, Philip Eclarinal, Antoun Toubaji, Maria J Merino, Bradford J Wood, Sandeep Gurram, Peter L Choyke, Peter A Pinto, Baris Turkbey","doi":"10.1148/rycan.240050","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performance differences between each dataset. Materials and Methods This single-center retrospective study included patients who underwent prostate MRI at an external institution and were rescanned at the authors' institution between May 2015 and May 2022. A genitourinary radiologist performed prospective readouts on in-house MRI scans following the Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 or 2.1 and retrospective image quality assessments for all scans. A subgroup of patients underwent an MRI/US fusion-guided biopsy. A bpMRI-based lesion detection AI model previously developed using a completely separate dataset was tested on both MRI datasets. Detection rates were compared between external and in-house datasets with use of the paired comparison permutation tests. Factors associated with AI detection performance were assessed using multivariable generalized mixed-effects models, incorporating features selected through forward stepwise regression based on the Akaike information criterion. Results The study included 201 male patients (median age, 66 years [IQR, 62-70 years]; prostate-specific antigen density, 0.14 ng/mL<sup>2</sup> [IQR, 0.10-0.22 ng/mL<sup>2</sup>]) with a median interval between external and in-house MRI scans of 182 days (IQR, 97-383 days). For intraprostatic lesions, AI detected 39.7% (149 of 375) on external and 56.0% (210 of 375) on in-house MRI scans (<i>P</i> < .001). For csPCa-positive lesions, AI detected 61% (54 of 89) on external and 79% (70 of 89) on in-house MRI scans (<i>P</i> < .001). On external MRI scans, better overall lesion detection was associated with a higher PI-RADS score (odds ratio [OR] = 1.57; <i>P</i> = .005), larger lesion diameter (OR = 3.96; <i>P</i> < .001), better diffusion-weighted MRI quality (OR = 1.53; <i>P</i> = .02), and fewer lesions at MRI (OR = 0.78; <i>P</i> = .045). Better csPCa detection was associated with a shorter MRI interval between external and in-house scans (OR = 0.58; <i>P</i> = .03) and larger lesion size (OR = 10.19; <i>P</i> < .001). Conclusion The AI model exhibited modest performance in identifying both overall and csPCa-positive lesions on external bpMRI scans. <b>Keywords:</b> MR Imaging, Urinary, Prostate <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":20786,"journal":{"name":"Radiology. Imaging cancer","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology. Imaging cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/rycan.240050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Purpose To evaluate the performance of an artificial intelligence (AI) model in detecting overall and clinically significant prostate cancer (csPCa)-positive lesions on paired external and in-house biparametric MRI (bpMRI) scans and assess performance differences between each dataset. Materials and Methods This single-center retrospective study included patients who underwent prostate MRI at an external institution and were rescanned at the authors' institution between May 2015 and May 2022. A genitourinary radiologist performed prospective readouts on in-house MRI scans following the Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 or 2.1 and retrospective image quality assessments for all scans. A subgroup of patients underwent an MRI/US fusion-guided biopsy. A bpMRI-based lesion detection AI model previously developed using a completely separate dataset was tested on both MRI datasets. Detection rates were compared between external and in-house datasets with use of the paired comparison permutation tests. Factors associated with AI detection performance were assessed using multivariable generalized mixed-effects models, incorporating features selected through forward stepwise regression based on the Akaike information criterion. Results The study included 201 male patients (median age, 66 years [IQR, 62-70 years]; prostate-specific antigen density, 0.14 ng/mL2 [IQR, 0.10-0.22 ng/mL2 ]) with a median interval between external and in-house MRI scans of 182 days (IQR, 97-383 days). For intraprostatic lesions, AI detected 39.7% (149 of 375) on external and 56.0% (210 of 375) on in-house MRI scans (P < .001). For csPCa-positive lesions, AI detected 61% (54 of 89) on external and 79% (70 of 89) on in-house MRI scans (P < .001). On external MRI scans, better overall lesion detection was associated with a higher PI-RADS score (odds ratio [OR] = 1.57; P = .005), larger lesion diameter (OR = 3.96; P < .001), better diffusion-weighted MRI quality (OR = 1.53; P = .02), and fewer lesions at MRI (OR = 0.78; P = .045). Better csPCa detection was associated with a shorter MRI interval between external and in-house scans (OR = 0.58; P = .03) and larger lesion size (OR = 10.19; P < .001). Conclusion The AI model exhibited modest performance in identifying both overall and csPCa-positive lesions on external bpMRI scans. Keywords: MR Imaging, Urinary, Prostate Supplemental material is available for this article. © RSNA, 2024.