{"title":"N-Acetyl-L-cysteine attenuates titanium dioxide nanoparticle (TiO2 NP)-induced autophagy in male germ cells","authors":"Beom-Jin Shin , Bang-Jin Kim , Eun-Ji Paeng , Jack Tyler Rifkin , Sung-Hwan Moon , Seung Hee Shin , Buom-Yong Ryu","doi":"10.1016/j.etap.2024.104466","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO<sub>2</sub> NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO<sub>2</sub> NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO<sub>2</sub> NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO<sub>2</sub> NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO<sub>2</sub> NPs while also highlighting NAC as a possible protective agent against reproductive toxins.</p></div>","PeriodicalId":11775,"journal":{"name":"Environmental toxicology and pharmacology","volume":"108 ","pages":"Article 104466"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001066","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.
期刊介绍:
Environmental Toxicology and Pharmacology publishes the results of studies concerning toxic and pharmacological effects of (human and veterinary) drugs and of environmental contaminants in animals and man.
Areas of special interest are: molecular mechanisms of toxicity, biotransformation and toxicokinetics (including toxicokinetic modelling), molecular, biochemical and physiological mechanisms explaining differences in sensitivity between species and individuals, the characterisation of pathophysiological models and mechanisms involved in the development of effects and the identification of biological markers that can be used to study exposure and effects in man and animals.
In addition to full length papers, short communications, full-length reviews and mini-reviews, Environmental Toxicology and Pharmacology will publish in depth assessments of special problem areas. The latter publications may exceed the length of a full length paper three to fourfold. A basic requirement is that the assessments are made under the auspices of international groups of leading experts in the fields concerned. The information examined may either consist of data that were already published, or of new data that were obtained within the framework of collaborative research programmes. Provision is also made for the acceptance of minireviews on (classes of) compounds, toxicities or mechanisms, debating recent advances in rapidly developing fields that fall within the scope of the journal.