Critical linkages among floodplain hydrology, geomorphology and ecology along a lowland meandering river, Illinois, USA

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY Ecohydrology Pub Date : 2024-05-17 DOI:10.1002/eco.2661
Tanya Shukla, Chelsy R. Salas, Ryan C. Pankau, Bruce L. Rhoads
{"title":"Critical linkages among floodplain hydrology, geomorphology and ecology along a lowland meandering river, Illinois, USA","authors":"Tanya Shukla,&nbsp;Chelsy R. Salas,&nbsp;Ryan C. Pankau,&nbsp;Bruce L. Rhoads","doi":"10.1002/eco.2661","DOIUrl":null,"url":null,"abstract":"<p>The ecology of forested floodplains is intricately linked to river hydrology through the frequency, magnitude, timing and duration of floodplain inundation. Spatial variability in inundation characteristics is influenced by the geomorphic template of a floodplain, both in terms of the topography of floodplain features and connectivity of these features to the main river channel. Spatial variability in inundation, in turn, has the potential to produce spatial variability in forest ecological characteristics. This study examines the influence of floodplain geomorphic features on spatial variability in inundation frequency as well as the relationship between these geomorphic features and the ecological characteristics of a floodplain forest. The frequencies of floods of different magnitudes are determined from flow-duration analysis of over 100 years of discharge data for a lowland meandering river in Illinois, USA. Data on discharge, stage, and topography are then used to calibrate a two-dimensional hydraulic model of flow across the floodplain at different levels of inundation. Integrating the frequency and inundation data yields mapping of average annual inundation frequency for different parts of the floodplain. Significant differences in inundation frequency correspond to three distinct floodplain geomorphic features: secondary channels (frequency = 12%), closed depressions (frequency = 4%) and the floodplain surface (frequency = 3%). Tree density is similar among the three types of geomorphic features, but tree species composition and canopy density differ significantly between secondary channels and the floodplain surface. The results provide insight into linkages among hydrology, geomorphology and tree characteristics of forested floodplains of lowland meandering rivers.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"17 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2661","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2661","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ecology of forested floodplains is intricately linked to river hydrology through the frequency, magnitude, timing and duration of floodplain inundation. Spatial variability in inundation characteristics is influenced by the geomorphic template of a floodplain, both in terms of the topography of floodplain features and connectivity of these features to the main river channel. Spatial variability in inundation, in turn, has the potential to produce spatial variability in forest ecological characteristics. This study examines the influence of floodplain geomorphic features on spatial variability in inundation frequency as well as the relationship between these geomorphic features and the ecological characteristics of a floodplain forest. The frequencies of floods of different magnitudes are determined from flow-duration analysis of over 100 years of discharge data for a lowland meandering river in Illinois, USA. Data on discharge, stage, and topography are then used to calibrate a two-dimensional hydraulic model of flow across the floodplain at different levels of inundation. Integrating the frequency and inundation data yields mapping of average annual inundation frequency for different parts of the floodplain. Significant differences in inundation frequency correspond to three distinct floodplain geomorphic features: secondary channels (frequency = 12%), closed depressions (frequency = 4%) and the floodplain surface (frequency = 3%). Tree density is similar among the three types of geomorphic features, but tree species composition and canopy density differ significantly between secondary channels and the floodplain surface. The results provide insight into linkages among hydrology, geomorphology and tree characteristics of forested floodplains of lowland meandering rivers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
美国伊利诺伊州一条低地蜿蜒河流沿岸洪泛区水文、地貌和生态之间的重要联系
森林冲积平原的生态通过冲积平原淹没的频率、规模、时间和持续时间与河流水文错综复杂地联系在一起。淹没特征的空间变化受洪泛区地貌模板的影响,包括洪泛区地貌特征以及这些特征与主河道的连接性。淹没的空间变化反过来又有可能产生森林生态特征的空间变化。本研究探讨了洪泛区地貌特征对淹没频率空间变化的影响,以及这些地貌特征与洪泛区森林生态特征之间的关系。通过对美国伊利诺伊州一条低地蜿蜒河流 100 多年的排水数据进行流量-持续时间分析,确定了不同量级洪水的频率。然后,利用有关排水量、河段和地形的数据,校准在不同淹没水平下流经洪泛区的二维水力模型。综合频率和淹没数据,绘制出洪泛区不同区域的年平均淹没频率图。淹没频率的显著差异与三种不同的洪泛区地貌特征相对应:次级河道(频率 = 12%)、封闭洼地(频率 = 4%)和洪泛区地表(频率 = %)。这三类地貌特征的树木密度相似,但次级河道和洪泛平原表面的树种组成和树冠密度差异很大。研究结果有助于深入了解低地蜿蜒河流森林泛滥平原的水文、地貌和树木特征之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecohydrology
Ecohydrology 环境科学-生态学
CiteScore
5.10
自引率
7.70%
发文量
116
审稿时长
24 months
期刊介绍: Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management. Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.
期刊最新文献
Issue Information Temperature-driven convergence and divergence of ecohydrological dynamics in the ecosystems of a sky island mountain range Issue Information Soil Building and Capillary Barrier–Enhanced Water Availability Help Explain Pisonia grandis and Other Atoll Native's Tolerance for Variable Precipitation Regimes Analysis of Research Hot Spots in Chinese and International English Ecohydrological Literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1