{"title":"TPU-assisted adhesive PDMS film for dry or underwater environments","authors":"Sangyeun Park, Minhyeok Kim, Hongyun So","doi":"10.1038/s41427-024-00546-8","DOIUrl":null,"url":null,"abstract":"Adhesive polymer films with anisotropic properties on either side have attracted tremendous interest for biomedical and engineering applications. However, developing an innovative solution that provides effective adhesion under both dry and wet conditions remains a considerable challenge. In this study, we devised a novel process for creating adhesive films by casting polydimethylsiloxane (PDMS) onto a thermoplastic polyurethane (TPU) substrate. During the curing process, the PDMS layer in contact with the TPU was lightly cross-linked, which significantly increased adhesion. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. In practical applications, the APF proved to be an effective waterproof patch by adhering to the surfaces of objects submerged in water. Adhesive polydimethylsiloxane (PDMS) film is successfully fabricated by casting process using thermoplastic polyurethane (TPU). During the curing process, the PDMS lightly cross-linked at the interface with the TPU exhibited a remarkable increase in adhesion properties. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. Our findings suggest that the APF could be used an effective waterproof patch by adhering to the surfaces of objects submerged in water.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-10"},"PeriodicalIF":8.6000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00546-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00546-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Adhesive polymer films with anisotropic properties on either side have attracted tremendous interest for biomedical and engineering applications. However, developing an innovative solution that provides effective adhesion under both dry and wet conditions remains a considerable challenge. In this study, we devised a novel process for creating adhesive films by casting polydimethylsiloxane (PDMS) onto a thermoplastic polyurethane (TPU) substrate. During the curing process, the PDMS layer in contact with the TPU was lightly cross-linked, which significantly increased adhesion. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. In practical applications, the APF proved to be an effective waterproof patch by adhering to the surfaces of objects submerged in water. Adhesive polydimethylsiloxane (PDMS) film is successfully fabricated by casting process using thermoplastic polyurethane (TPU). During the curing process, the PDMS lightly cross-linked at the interface with the TPU exhibited a remarkable increase in adhesion properties. The catalytic reaction used for polymerization was regulated by the TPU, which is known to adsorb metal ions. This adhesive PDMS film (APF) demonstrated outstanding adhesion on various substrates under dry and underwater conditions and maintained adhesion even after repeated use. Our findings suggest that the APF could be used an effective waterproof patch by adhering to the surfaces of objects submerged in water.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.