{"title":"One step hydrothermal synthesis of Fe2O3/KIT-6 nanocomposite as highly responsive humidity sensor","authors":"Shivani Jakhar, Priya Malik, Supriya Sehrawat, Aryan Boora, Bhavna Rohilla, Sonia Nain, Surender Duhan","doi":"10.1007/s10934-024-01628-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel approach for the one-step hydrothermal synthesis of Fe<sub>2</sub>O<sub>3</sub>/KIT-6 (Korea Advanced Institute of Science and Technology) nanocomposite, demonstrating its remarkable potential as a humidity sensor at room temperature. The nanocomposite, comprised of hydrothermally derived hematite-doped hybrid moieties within a mesostructured siliceous matrix, exhibits outstanding sensitivity to moisture. Through a comprehensive characterization utilizing various techniques including X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy, and energy dispersive X-ray analysis, the ordered mesoporous structure and purity of the synthesized nanocomposite are confirmed. Notably, the incorporation of 5 wt% Fe<sub>2</sub>O<sub>3</sub> into the KIT-6 framework via hydrothermal synthesis yields superior sensing properties, characterized by minimal hysteresis, rapid response and recovery times (14s/15s), and exceptional stability within a wide relative humidity (RH) range of 11-98%. These findings pave the way for the development of practical moisture detection devices employing the silica-hematite hybrid nanocomposite as a sensing material in resistive-type sensor configurations.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 5","pages":"1763 - 1775"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01628-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel approach for the one-step hydrothermal synthesis of Fe2O3/KIT-6 (Korea Advanced Institute of Science and Technology) nanocomposite, demonstrating its remarkable potential as a humidity sensor at room temperature. The nanocomposite, comprised of hydrothermally derived hematite-doped hybrid moieties within a mesostructured siliceous matrix, exhibits outstanding sensitivity to moisture. Through a comprehensive characterization utilizing various techniques including X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy, and energy dispersive X-ray analysis, the ordered mesoporous structure and purity of the synthesized nanocomposite are confirmed. Notably, the incorporation of 5 wt% Fe2O3 into the KIT-6 framework via hydrothermal synthesis yields superior sensing properties, characterized by minimal hysteresis, rapid response and recovery times (14s/15s), and exceptional stability within a wide relative humidity (RH) range of 11-98%. These findings pave the way for the development of practical moisture detection devices employing the silica-hematite hybrid nanocomposite as a sensing material in resistive-type sensor configurations.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.