Track Deterioration Model—State of the Art and Research Potentials

Ursula Ehrhart, Dieter Knabl, Stefan Marschnig
{"title":"Track Deterioration Model—State of the Art and Research Potentials","authors":"Ursula Ehrhart, Dieter Knabl, Stefan Marschnig","doi":"10.3390/infrastructures9050086","DOIUrl":null,"url":null,"abstract":"Track deterioration models (TDMs) help to allocate maintenance work (direct costs) to vehicle runs. Furthermore, these models demonstrate the impact of rolling stock properties on infrastructure. This paper review provides an overview of the state of the art in railway track deterioration modelling and outlines the research potential in this domain. The main focus lies on ballast degradation, rail surface wear and fatigue, and their description in an empiric analytic wear formula. The basis for discussion is the wear formula of the Graz University of Technology. While the TDM demonstrates effectiveness, enhancements are sought, particularly with regard to adjusting the track parameters that vary across railway networks. Further exploration aims to refine the description of rail surface wear and rolling contact fatigue (RCF), incorporating factors such as traction energy and short-wave effects and adapting mathematical functions such as the t-Gamma function. This review underscores the need for ongoing research to develop TDMs that are both simple and detailed enough to encourage track-friendly rolling stock design.","PeriodicalId":502683,"journal":{"name":"Infrastructures","volume":"92 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrastructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/infrastructures9050086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Track deterioration models (TDMs) help to allocate maintenance work (direct costs) to vehicle runs. Furthermore, these models demonstrate the impact of rolling stock properties on infrastructure. This paper review provides an overview of the state of the art in railway track deterioration modelling and outlines the research potential in this domain. The main focus lies on ballast degradation, rail surface wear and fatigue, and their description in an empiric analytic wear formula. The basis for discussion is the wear formula of the Graz University of Technology. While the TDM demonstrates effectiveness, enhancements are sought, particularly with regard to adjusting the track parameters that vary across railway networks. Further exploration aims to refine the description of rail surface wear and rolling contact fatigue (RCF), incorporating factors such as traction energy and short-wave effects and adapting mathematical functions such as the t-Gamma function. This review underscores the need for ongoing research to develop TDMs that are both simple and detailed enough to encourage track-friendly rolling stock design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轨道退化模型--最新技术和研究潜力
轨道老化模型(TDM)有助于将维护工作(直接成本)分配给车辆运行。此外,这些模型还展示了机车车辆特性对基础设施的影响。本文综述了铁路轨道老化建模的最新进展,并概述了该领域的研究潜力。主要重点是无砟轨道退化、轨道表面磨损和疲劳,以及用经验分析磨损公式对其进行描述。讨论的基础是格拉茨技术大学的磨损公式。虽然 TDM 证明了其有效性,但仍在寻求改进,特别是在调整因铁路网络而异的轨道参数方面。进一步的探索旨在完善对轨道表面磨损和滚动接触疲劳(RCF)的描述,纳入牵引能量和短波效应等因素,并调整 t-Gamma 函数等数学函数。本综述强调,需要不断进行研究,以开发既简单又详细的 TDM,从而促进轨道友好型机车车辆的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Pigment-Modified Clear Binders and Asphalts: An Approach towards Sustainable, Heat Harvesting, and Non-Black Pavements Traffic Flow Optimization at Toll Plaza Using Proactive Deep Learning Strategies Track Deterioration Model—State of the Art and Research Potentials Microstructural and Residual Properties of Self-Compacting Concrete Containing Waste Copper Slag as Fine Aggregate Exposed to Ambient and Elevated Temperatures Building Information Modeling/Building Energy Simulation Integration Based on Quantitative and Interpretative Interoperability Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1