Technical Perspective: Synthetic Data Needs a Reproducibility Benchmark

Xi He
{"title":"Technical Perspective: Synthetic Data Needs a Reproducibility Benchmark","authors":"Xi He","doi":"10.1145/3665252.3665266","DOIUrl":null,"url":null,"abstract":"Synthetic data is a vital substitute for real sensitive personal data in supporting social science research and policy studies. Extensive prior research has delved into various models for generating synthetic data, from traditional statistical approaches to cutting-edge deep-learning methods. However, selecting the most suitable one for unforeseen applications poses a significant challenge due to the varying strengths and weaknesses, dependent on factors such as the application domain, data distribution, analytical requirements, and privacy considerations.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic data is a vital substitute for real sensitive personal data in supporting social science research and policy studies. Extensive prior research has delved into various models for generating synthetic data, from traditional statistical approaches to cutting-edge deep-learning methods. However, selecting the most suitable one for unforeseen applications poses a significant challenge due to the varying strengths and weaknesses, dependent on factors such as the application domain, data distribution, analytical requirements, and privacy considerations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
技术视角:合成数据需要可重复性基准
在支持社会科学研究和政策研究方面,合成数据是真实敏感个人数据的重要替代品。此前的大量研究已经深入探讨了生成合成数据的各种模型,从传统的统计方法到前沿的深度学习方法,不一而足。然而,由于优缺点各不相同,取决于应用领域、数据分布、分析要求和隐私考虑等因素,为不可预见的应用选择最合适的模型是一项重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1