From Binary Join to Free Join

Y. Wang, Max Willsey, Dan Suciu
{"title":"From Binary Join to Free Join","authors":"Y. Wang, Max Willsey, Dan Suciu","doi":"10.1145/3665252.3665259","DOIUrl":null,"url":null,"abstract":"Over the last decade, worst-case optimal join (WCOJ) algorithms have emerged as a new paradigm for one of the most fundamental challenges in query processing: computing joins efficiently. Such an algorithm can be asymptotically faster than traditional binary joins, all the while remaining simple to understand and implement. However, they have been found to be less efficient than the old paradigm, traditional binary join plans, on the typical acyclic queries found in practice. In an effort to unify and generalize the two paradigms, we proposed a new framework, called Free Join, in our SIGMOD 2023 paper. Not only does Free Join unite the worlds of traditional and worst-case optimal join algorithms, it uncovers optimizations and evaluation strategies that outperform both.\n In this article, we approach Free Join from the traditional perspective of binary joins, and re-derive the more general framework via a series of gradual transformations. We hope this perspective from the past can help practitioners better understand the Free Join framework, and find ways to incorporate some of the ideas into their own systems.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3665252.3665259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last decade, worst-case optimal join (WCOJ) algorithms have emerged as a new paradigm for one of the most fundamental challenges in query processing: computing joins efficiently. Such an algorithm can be asymptotically faster than traditional binary joins, all the while remaining simple to understand and implement. However, they have been found to be less efficient than the old paradigm, traditional binary join plans, on the typical acyclic queries found in practice. In an effort to unify and generalize the two paradigms, we proposed a new framework, called Free Join, in our SIGMOD 2023 paper. Not only does Free Join unite the worlds of traditional and worst-case optimal join algorithms, it uncovers optimizations and evaluation strategies that outperform both. In this article, we approach Free Join from the traditional perspective of binary joins, and re-derive the more general framework via a series of gradual transformations. We hope this perspective from the past can help practitioners better understand the Free Join framework, and find ways to incorporate some of the ideas into their own systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从二进制加盟到免费加盟
在过去十年中,最坏情况最优连接(WCOJ)算法已成为解决查询处理中最基本挑战之一--高效计算连接--的新范例。这种算法在渐进上比传统的二进制连接更快,而且易于理解和实现。然而,在实际应用中发现的典型非循环查询中,这些算法的效率要低于旧范式,即传统的二进制连接计划。为了统一和推广这两种范式,我们在 SIGMOD 2023 论文中提出了一种新的框架,称为 Free Join。Free Join 不仅将传统的最优连接算法和最坏情况下的最优连接算法结合在一起,还发现了优于这两种算法的优化和评估策略。在本文中,我们从二进制连接的传统视角切入 Free Join,并通过一系列渐进转换重新推导出更通用的框架。我们希望这种前人的视角能帮助实践者更好地理解 Free Join 框架,并找到将其中一些想法融入自己系统的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1