Hydrodynamic simulation-informed compartment modelling of an annular centrifugal contactor

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2024-05-08 DOI:10.1515/cppm-2023-0091
Banu Bulut Acar, Maram Al-Sayaghi, Alex Fells, Bruce Hanson
{"title":"Hydrodynamic simulation-informed compartment modelling of an annular centrifugal contactor","authors":"Banu Bulut Acar, Maram Al-Sayaghi, Alex Fells, Bruce Hanson","doi":"10.1515/cppm-2023-0091","DOIUrl":null,"url":null,"abstract":"\n The geometrical and hydraulic parameters have a great impact on the mass transfer characteristics of annular centrifugal contactors. The objective of this study is to evaluate the mass transfer performance of a single annular centrifugal contactor by applying the computational fluid dynamics informed compartment modelling approach. In the study, a steady state compartment model of an annular centrifugal contactor is developed in gProms general purpose process modeller by using the hydrodynamic parameters obtained from computational fluid dynamics simulations performed in OpenFOAM with the GEneralised Multifluid Modelling Approach (GEMMA). The mass transfer rate predicted by the developed compartment model is compared with data obtained from uranium extraction with Tributyl Phosphate experiments performed with a laboratory-scale annular centrifugal contactor. Uranium concentrations in the organic and aqueous outlets and the mass transfer rate evaluated by the developed compartmented contactor model are in good agreement with the experimental data. The results reveal that the use of a hydrodynamic-informed compartment modelling approach raises the possibility of designing full-scale annular centrifugal contactors without the need for detailed computational fluid dynamics simulations and the prediction of mass transfer performance of the whole system from laboratory scale experiments.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The geometrical and hydraulic parameters have a great impact on the mass transfer characteristics of annular centrifugal contactors. The objective of this study is to evaluate the mass transfer performance of a single annular centrifugal contactor by applying the computational fluid dynamics informed compartment modelling approach. In the study, a steady state compartment model of an annular centrifugal contactor is developed in gProms general purpose process modeller by using the hydrodynamic parameters obtained from computational fluid dynamics simulations performed in OpenFOAM with the GEneralised Multifluid Modelling Approach (GEMMA). The mass transfer rate predicted by the developed compartment model is compared with data obtained from uranium extraction with Tributyl Phosphate experiments performed with a laboratory-scale annular centrifugal contactor. Uranium concentrations in the organic and aqueous outlets and the mass transfer rate evaluated by the developed compartmented contactor model are in good agreement with the experimental data. The results reveal that the use of a hydrodynamic-informed compartment modelling approach raises the possibility of designing full-scale annular centrifugal contactors without the need for detailed computational fluid dynamics simulations and the prediction of mass transfer performance of the whole system from laboratory scale experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环形离心接触器的流体动力学仿真隔室建模
几何参数和水力参数对环形离心接触器的传质特性有很大影响。本研究的目的是应用计算流体动力学的隔室建模方法,评估单个环形离心接触器的传质性能。在这项研究中,利用在使用通用多流体建模方法(GEMMA)的 OpenFOAM 中进行计算流体动力学模拟时获得的流体动力学参数,在 gProms 通用过程建模器中开发了环形离心接触器的稳态隔室模型。将所开发的分室模型预测的传质速率与使用实验室规模的环形离心接触器进行的磷酸三丁酯铀萃取实验所获得的数据进行了比较。有机物和水出口中的铀浓度以及所开发的分室接触器模型评估的传质速率与实验数据非常吻合。研究结果表明,采用流体动力学分室建模方法可以设计全尺寸环形离心接触器,而无需进行详细的计算流体动力学模拟,也无需根据实验室规模的实验来预测整个系统的传质性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1