Banu Bulut Acar, Maram Al-Sayaghi, Alex Fells, Bruce Hanson
{"title":"Hydrodynamic simulation-informed compartment modelling of an annular centrifugal contactor","authors":"Banu Bulut Acar, Maram Al-Sayaghi, Alex Fells, Bruce Hanson","doi":"10.1515/cppm-2023-0091","DOIUrl":null,"url":null,"abstract":"\n The geometrical and hydraulic parameters have a great impact on the mass transfer characteristics of annular centrifugal contactors. The objective of this study is to evaluate the mass transfer performance of a single annular centrifugal contactor by applying the computational fluid dynamics informed compartment modelling approach. In the study, a steady state compartment model of an annular centrifugal contactor is developed in gProms general purpose process modeller by using the hydrodynamic parameters obtained from computational fluid dynamics simulations performed in OpenFOAM with the GEneralised Multifluid Modelling Approach (GEMMA). The mass transfer rate predicted by the developed compartment model is compared with data obtained from uranium extraction with Tributyl Phosphate experiments performed with a laboratory-scale annular centrifugal contactor. Uranium concentrations in the organic and aqueous outlets and the mass transfer rate evaluated by the developed compartmented contactor model are in good agreement with the experimental data. The results reveal that the use of a hydrodynamic-informed compartment modelling approach raises the possibility of designing full-scale annular centrifugal contactors without the need for detailed computational fluid dynamics simulations and the prediction of mass transfer performance of the whole system from laboratory scale experiments.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The geometrical and hydraulic parameters have a great impact on the mass transfer characteristics of annular centrifugal contactors. The objective of this study is to evaluate the mass transfer performance of a single annular centrifugal contactor by applying the computational fluid dynamics informed compartment modelling approach. In the study, a steady state compartment model of an annular centrifugal contactor is developed in gProms general purpose process modeller by using the hydrodynamic parameters obtained from computational fluid dynamics simulations performed in OpenFOAM with the GEneralised Multifluid Modelling Approach (GEMMA). The mass transfer rate predicted by the developed compartment model is compared with data obtained from uranium extraction with Tributyl Phosphate experiments performed with a laboratory-scale annular centrifugal contactor. Uranium concentrations in the organic and aqueous outlets and the mass transfer rate evaluated by the developed compartmented contactor model are in good agreement with the experimental data. The results reveal that the use of a hydrodynamic-informed compartment modelling approach raises the possibility of designing full-scale annular centrifugal contactors without the need for detailed computational fluid dynamics simulations and the prediction of mass transfer performance of the whole system from laboratory scale experiments.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.